зачем нужно среднее арифметическое
Правильное среднее
Существует много видов средних, но в каждой ситуации только одно из них правильное. Только один вид среднего следует использовать в каждом конкретном случае, и ошибка может вам стоить очень дорого.
Дело в том, что в основе такого усреднения лежит закон больших чисел и допущение, что исходная величина распределена нормально. А это подразумевает, что возможные значения сконцентрированы вокруг некоторого наиболее частого значения, а отклонения и в большую, и в меньшую сторону относительно невелики и равновероятны.
В следующих записях я приведу интересные примеры неправильного усреднения, а сейчас перейдем к другим видам среднего.
Сначала, наверное, может показаться, что правильное значение 65 км/ч, потому что (50+80)/2 = 65.
Однако быстро становится понятно, что если бы другой автомобиль двигался со средней скоростью, то он провел бы в пути столько же времени, что и первый. Именно в этом смысл усреднения в данном случае.
И вот тут на помощь приходит среднее гармоническое:
Для нашей задачи искомое среднее равно 2/(1/50+1/80)=61.54 км/ч. И действительно в первом случае автомобиль затратил 2 часа на преодоление 100 км со скоростью 50 км/ч и еще 1.25 часа ему потребовалось на следующие 100 км, потому что скорость возросла до 80 км/ч. Таким образом, всего ушло 3.25 часа.
Если бы автомобиль все 200 км двигался со скоростью 61.54 км/ч, то у него также ушло бы на дорогу 3.25 часа.
Можно предположить, что есть несколько вариантов усреднения. Во-первых, среднее арифметическое: (12+42)/2 = 27%. Во-вторых, сложный процент: 1.12*1.42=1.5904, т.е. 59.04% за 2 года или 28.02% за год.
Но «в среднем» означает, что применив это значение к каждому году, мы получим тот же самый результат, что и при использовании множества исходных значений.
Проверяем. Среднее арифметическое: 1.27*1.27=1.6129 (на 61.29%). Сложный процент: 1.2802*1.2802=1.6389 (на 63.89%). Результаты мало того, что разные, так и оба неправильные, потому что выручка за 2 года выросла на 59.04%.
Среднее геометрическое часто встречается в реальных бизнес-задачах вместе с процентами и долями. Если в вашей задаче что-то растет или падает и вы хотите усреднить динамику показателя, то вам следует применять среднее геометрическое.
Вместо заключения
Повторю главные моменты:
— среднее арифметическое далеко не всегда соответствует смыслу и физической сущности усредняемого показателя;
— существует много видов средних значений, но в каждом конкретном случае есть только один правильный вид среднего, и именно его следует использовать в расчетах.
Зачем нужно среднее арифметическое
Средним арифметическим нескольких величин является отношение суммы этих величин к их количеству.
Среднее арифметическое определенного ряда чисел называется сумма всех этих чисел, поделенная на количество слагаемых. Таким образом, среднее арифметическое является средним значением числового ряда.
Чему равно среднее арифметическое нескольких чисел? А равно они сумме этих чисел, которая поделена на количество слагаемых в этой сумме.
Как найти среднее арифметическое число
В вычислении или нахождении среднего арифметического нескольких чисел, нет ничего сложного, достаточно сложить все представленные числа, а полученную сумму разделить на количество слагаемых. Полученный результат и будет средним арифметическим этих чисел.
Рассмотрим этот процесс более подробно. Что же нам нужно сделать для вычисления среднего арифметического и получения конечного результата этого числа.
• Во-первых, для его вычисления нужно определить набор чисел или их количество. В этот набор могут входить большие и маленькие числа, и их количество может быть каким угодно.
• Во-вторых, все эти числа нужно сложить и получить их сумму. Естественно, если числа несложные и их небольшое количество, то вычисления можно произвести, записав от руки. А если же набор чисел впечатляющий, то лучше воспользоваться калькулятором или электронной таблицей.
• В-третьих, необходимо подсчитать количество чисел, входящих в список. При повторе числа, следует каждое из них считать по отдельности.
• И, в-четвертых, полученную от сложения сумму необходимо разделить на количество чисел. В итоге мы получим результат, который и будет средним арифметическим числом этого ряда.
Для чего нужно среднее арифметическое
Среднее арифметическое может пригодиться не только для решения примеров и задач на уроках математики, но для других целей, необходимых в повседневной жизни человека. Такими целями может служить подсчет среднего арифметического для расчета среднего расхода финансов в месяц, или для подсчета времени, которое вы тратите на дорогу, также для того чтобы узнать посещаемость, производительность, скорость движения, урожайность и много другого.
Так, например, давайте попробуем рассчитать, сколько времени вы тратите на дорогу в школу. Идя в школу или возвращаясь, домой вы каждый раз тратите на дорогу разное время, так как когда вы спешите, то вы идете быстрее, и поэтому дорога занимает меньше времени. А вот, возвращаясь, домой вы можете идти не спеша, общаясь с одноклассниками, любуясь природой и поэтому времени на дорогу займет больше.
Поэтому, точно определить время, затраченное на дорогу у вас не получиться, но благодаря среднему арифметическому вы сможете приблизительно узнать время, которое вы тратите на дорогу.
Припустим, что в первый день после выходных, вы потратили на путь от дома до школу пятнадцать минут, на второй день ваш путь занял двадцать минут, в среду вы прошли расстояние за двадцать пять минут, за такое же время составил ваш путь и в четверг, а в пятницу вы никуда не торопились и возвращались целых пол часа.
Давайте найдем среднее арифметическое, прибавив время, за все пять дней. Итак,
15 + 20 + 25 + 25 + 30 = 115
Теперь разделим эту сумму на количество дней
Благодаря такому способу вы узнали, что путь от дома до школы вы приблизительно тратите двадцать три минуты своего времени.
Домашнее задание
1.Путем нехитрых вычислений найдите среднее арифметическое число посещаемости учеников вашего класса за неделю.
Зачем нужно среднее арифметическое
“Мы живем, влюбляясь и мечтая,
Падая и поднимаясь ввысь.А статистика упрямая стараетсяВ цифрах выразить всю нашу жизнь”.
Выяснить в каких сферах общественности применяется среднее арифметическое значение.
Для достижения поставленной цели необходимо решить следующие задачи:
Рассказать о взаимосвязи статистики и сфер жизни
Показать, как среднее арифметическое применяется при решении задач связанных с различными областями человеческой деятельности.
Предмет исследования – применение среднего арифметического в различных областях человеческой деятельности.
Статические методы применяются во многих областях жизни при анализе различных ситуаций. Статистика не только определяет равномерность явлений, а также позволяет их тщательно изучать в частности.
В настоящее время статистика имеет следующее определение. Статистика – это планомерный и систематический учет массовых общественных явлений, который осуществляется государственными статистическими органами и дает числовое выражение проявляющимся закономерностям. Статистик существует очень много, например: статистика промышленности, статистика торговли, экономическая статистика, математическая, прикладная и т.д.
Основными задачами статистического исследования являются выявление и анализ закономерностей объектов которые выбраны для исследования, с целью установления возможности и достоверности перенесения сделанных выводов на генеральную совокупность.
Наше исследование является актуальным, так как многие люди в своей профессии часто используют методы статистики, в частности – вычисление среднего арифметического значения, не задумываясь об этом, и мы в своей работе решили акцентировать ваше внимание, чтобы показать, насколько этот метод важен в различных областях жизнедеятельности человека
Каждый из нас может применяет методы статистики в своей деятельности. Чтобы серьезно подойти к решению проблемы необходимо проанализировать ситуацию и сделать соответствующие выводы Статистические методы применяются в правоохранительных органах, здравоохранении, образовании, производстве и продаже товаров, в сфере услуг и т.д. Все статистические методы связаны с подсчетом тех или иных данных.А это означает, что статистика является одним из важнейших разделов математики, а математика как мы знаем наука о структурах, порядке и отношениях, которая сложилась на основе операций подсчёта, измерения и описания свойств и форм объектов. Математика не относится к естественным наукам, но широко используется в них как для точной формулировки их содержания, так и для получения новых результатов. Математика — наука, которая предоставляет данные другим наукам.
Статистика- это наука, изучающая количественную сторону массовых общественных явлений и процессов в неразрывной связи с их качественными особенностями в конкретных условиях места и времени. Это универсальная наука, охватывающая все отрасли человеческой деятельности. Для изучения тех или иных явлений в статистике применяют различные методы. Одним из важнейших методов является метод нахождения среднего арифметического. Не менее важную роль в исследование данных вносят медиана, размах, и мода.
Среднее арифметическое (средним арифметическим ряда чисел называется частное от деления суммы этих чисел на их количество) является важной характеристикой ряда чисел
Статистические данные применяются постоянно во всех сферах жизни, так же как и статистические методы, которые обеспечивают сбор необходимых данных. Основу статистики должны знать все люди, так как эта наука обучает, как собирать и систематизировать их, а также анализировать и делать выводы. В жизни подобные знаний могут пригодиться и не раз, причем на любой работе. У каждого человека есть свой метод анализа окружающего мира, а статистика помогает формировать наблюдательность, которая нужна при сборе информации. Статистика позволяет регистрировать социальные, демографические, экономические и т.д. феномены.
В своей работе я хочу показать где и как применяется среднеарифметическое в различных областях жизни. Для этого я обращалась к медицинским учебникам, интернет-данным, проанализировала результаты гиа за некоторые годы учащихся нашей школы и дневник наблюдений за погодой, который вела сама в 6 классе. Остановимся более подробно на исследовании
Теоретическая часть.
Применение среднеарифметического в медицине.
Медицинская статистика является методом социальной диагностики, поскольку она позволяет дать оценку состояния здоровья населения страны, региона и на этой основе разработать меры, направленные на улучшение общественного здоровья. Важнейшим принципом статистики является применение ее для изучения неотдельных, единичных, а массовых явлений, с целью выявления их общих закономерностей. Эти закономерности проявляются, как правило, в массе наблюдений, то есть при изучении статистической совокупности.
1) позволяет количественно измерить показатели здоровья населения и показатели деятельности медицинских учреждений
2) определяет силу влияния различных факторов на здоровье населения
3) определяет эффективность лечения и оздоровительных мероприятий
4) позволяет оценить динамику показателей здоровья и позволяет прогнозировать их
5) позволяет получить необходимые данные для разработки норм и нормативов здравоохранения.
Средние арифметическое используются в медицине и здравоохранении:
а) для оценки состояния здоровья — например, параметров физического развития (средний рост, средний вес, средний объем жизненной емкости легких и др.), соматических показателей (средний уровень сахара в крови, средний пульс, средняя СОЭ и др.);
б) для оценки организации работы лечебно-профилактических и санитарно-противоэпидемических учреждений, а также деятельности отдельных врачей и других медицинских работников (средняя длительность пребывания больного на койке, среднее число посещений за 1 ч. приема в поликлинике и др.);
в) для оценки состояния окружающей среды.
В то же время, у больных людей значения многих физиологических параметров имеют асимметричное распределение, ввиду того, что изменяются в сторону увеличения или уменьшения под влиянием заболевания. Поэтому для характеристики центральной тенденции их распределения помимо среднего арифметического используется медиана, мода и размах ряда величин.
Применение среднеарифметического в органах правоохранения
Статистика в органах правоохранения охватывает широкий круг проблем, связанных с негативными явлениями в обществе. Изучает различного рода преступления и правонарушения, такие как: бандитизм, ограбление, изнасилование, проституция, наркомания, алкоголизм, коррупция и другие отрицательные общественные явления, а так же нарушения морально-этических норм. Статистика изучает не только негативные явления, но и позитивные, которые характеризуют моральный облик людей. Статистический анализ начинается с изучения показателей, взятых из отчетов. Прежде всего определяется уровень преступности, т. е. выясняется, сколько в абсолютных цифрах зарегистрировано преступлений— всего, а также по родам и видам. Аналогичную характеристику в абсолютных цифрах получают о лицах, совершивших эти преступления (их общее число, по видам совершенных преступлений, по признакам пола, возраста, социального положения и т. д.), об объеме и структуре деятельности правоохранительных органов и других субъектов борьбы с преступностью. В криминологических исследованиях средние показатели применяют, например, для определения среднего возраста преступников, средних сроков наказания, назначенных за какой-либо вид преступления. Также, представляет интерес степень распространенности преступности среди различных возрастных групп, среди специальных субъектов преступлений (работников торговли, автотранспорта), среди групп населения, выделенных породу занятий, отрасли народного хозяйства, типу населенного пункта, времени проживания в данной местности, и т. д. Криминологическая статистика дает возможность наиболее оптимально спланировать распределение сил и средств борьбе с преступными проявлениями. Исходя из статистических показателей с уровнем преступности, возможностей оперативных и следственных работников и других данных, планируется средняя штатная численность правоохранительных органов и их допустимая средняя индивидуальная нагрузка.
Применение среднеарифметического в образовании
Применение среднеарифметического в оценке условий жизни населения страны.
Уровень жизни населения — представляет собой экономическую категорию. Это уровень обеспеченности населения необходимыми материальными благами и услугами. Уровень жизни — это уровень благосостояния населения, потребления благ и услуг, совокупность условий и показателей, характеризующих меру удовлетворения основных жизненных потребностей людей.
В настоящее время, когда экономические системы стран подвергаются деформации и видоизменяются главной целью остаётся осуществление принципа социальной направленности рыночной экономики с помощью улучшения уровня жизни населения.
Основными задачами статистики уровня жизни населения являются: изучение фактического благосостояния населения, а также факторов, определяющих условия жизнедеятельности граждан страны в соответствии с экономическим ростом; измерение степени удовлетворения потребностей в материальных благах и услугах во взаимосвязи с социальными условиями и развитием производства.
Базой для построения системы показателей и решения указанных задач являются материалы макроэкономической статистики, демографической статистики, статистики труда, торговой статистики, статистики цен. Значительный объем собираемых сведений основывается на данных финансовой и бухгалтерской отчетности, государственной налоговой службы, Центрального банка РФ, Пенсионного фонда РФ и др., а также на материалах специальных обследований, переписей, опросов.
Здесь средние величины обобщают качественно разнородные значения признаков или системных пространственных совокупностей (международное сообщество, континент, государство, регион, район и т.д.) или динамических совокупностей, протяженных во времени (век, десятилетие, год, сезон и т.д.). средний национальный доход на душу населения, средняя урожайность зерновых по всех стране, средний реальный доход на душу населения, среднее потребление продуктов питания на душу населения, производительность общественного труда).
Очень заметна польза статистики в экономике. Учитывая то, что все в нашем мире продается и покупается, каждый норовит создать свой бизнес, то без анализа рынка никак
В настоящее время экономика нашей страны зависит от соотношения доллара и рубля. Резкое падение российского рубля произошло в декабре 2014 года.
Такие колебания курса рубля не новое явление и весьма характерное для финансовой истории России. 15 и 16 декабря 2014 года рубль упал на 22 процента
по отношению к ведущим мировым валютам, что побудило правительство и ЦБ РФ принять экстренные меры для спасения российской национальной валюты.
Впечатляющее падение рубля на 22 процента 15 декабря и 16 декабря также побудило инвесторов воспринять ситуацию как повторение кризиса 1998 года, когда рубль потерял 27 процентов 17 августа. Рубль в 2014 году упал более чем на 40 процентов по отношению к доллару и достиг новых исторических минимумов. К началу 2015 года, рубль находился на отметке 56,24 по отношению к доллару по сравнению с 32,9 в начале 2014 года.
Применение среднеарифметического в климатологии.
Показателями отдельных метеорологических элементов являются: средние значения, крайние значения, амплитуды, повторяемость различных значений элементов, накопленная повторяемость (обеспеченность), показатели изменчивости, показатели асимметрии и крутости кривой распределения.
Средние значения. Обычно определяют средние значения температуры и влажности воздуха, скорости ветра, атмосферного давления, осадков и т. д.
Чаще других определяют средние суточные, месячные и годовые значения метеорологических элементов.
Средняя месячная температура – деление сумы средних суточных температур на число суток месяца.
Практическая часть.
Применение среднеарифметического в медицине.
1.В травматологический пункт поликлиники №4 г.Волгограда в течение месяца ежедневно обращалось следующее число больных:
Better Explained: Как правильно посчитать среднюю температуру по больнице
Среднее значение кажется очень простым термином. Именно простота делает его таким лукавым. Давайте поговорим о том, какие средние значения бывают, и как их использовать правильно.
Простой пример: Утром вы ведёте машину до работы со скоростью 30 км/ч, потому что вы не хотите на работу, а обратно едете уже со скоростью 60 км/ч, потому что спешите попасть домой. Какова средняя скорость вашего передвижения в этот день?
Подсказка: Нет, не 45 км/ч.
А пока вот вам небольшая табличка.
Но что всё это значит?
Давайте начнём сначала. Что вообще мы понимаем под словом «среднее»? Для большинства из нас это «какое-то число посередине» либо некое сбалансированное по каким-то критериям число.
Можно предложить более универсальную интерпретацию понятия «среднее значение». Среднее значение какого-либо ряда значений — это то, которым можно заменить любую единицу ряда и получить тот же результат. Условно говоря, я могу выбросить все представленные данные, кроме среднего значения, и общий смысл не изменится.
Одна из целей получения среднего значения — это понять суть выборки данных с помощью репрезентативного образца. Но сам процесс вычисления среднего значения зависит от того, каким образом взаимодействуют элементы группы данных. Давайте посмотрим, как это происходит.
Среднее арифметическое
Среднее арифметическое знакомо нам всем со школы:
среднее арифметическое = сумма всех величин/количество величин
Задачка: вы весите 75 кг и зашли в лифт с подростком весом 50 кг и толстяком весом 175 кг. Каков средний вес вашей группы?
На самом деле вопрос стоит так: Если заменить вашу весёлую компанию тремя клонированными людьми с одинаковым весом, каким весом должен обладать каждый такой клон?
В этом случае мы просто заказываем на фабрике по производству клонов человека трёх экземпляров весом в 100 килограмм каждый (Помним: (75+50+175)/3) и довольно потираем руки.
Преимущества среднего арифметического:
Недостатки среднего арифметического:
Среднее арифметическое срабатывает в 80% случаев. К сожалению, 20% оставшихся случаев и вынуждают нас искать альтернативы для подсчёта среднего значения.
Медиана
Медиана — это та самая грань, которая отделяет наибольшие значения от наименьших. То самое «число посередине». Постойте-постойте, а разве среднее арифметическое делает не то же самое?
Вот вам простой пример. Какое число находится в середине этого ряда?
1, 2, 3, 4, 100
Число «3» находится в середине ряда. И хотя среднее арифметическое (22) является «средним», оно никак не отражает распределения этих чисел. Интуитивно (и абсолютно правильно!) мы считаем, что в середине этого ряда всё-таки 3, а не 22. Здесь среднее значение увеличилось благодаря резко отклоняющемуся от общей массы значению, 100.
Медиана решает эту проблему. Медиана делит наш числовой ряд на две равные части, причём первая половина имеет значения меньше либо равные медиане, а вторая — больше либо равные. Если в середине числового ряда оказывается два числа, мы просто берём среднее арифметическое этих двух чисел, чтобы получить медиану. В числовом ряду 1, 2, 3, 4 медианой станет число 2,5. Именно медиана позволяет выбивающимся из общей массы числам вроде 100 в нашем примере выше не влиять на общее впечатление о числовом ряде.
Преимущества медианы:
Недостатки медианы:
Такие средние значения, как цены на недвижимость или, например, уровень дохода часто вычисляются именно по медиане, потому что нам важна именно средняя стоимость большей части домов в конкретном районе или средний уровень доходов большей части населения. В таком случае Билл Гейтс с годовым доходом в несколько миллиардов не испортит нам всю статистику. Видите, как много зависит от того, как мы работаем с имеющимися данными?
Само слово может звучать странно, но оно означает всего лишь наиболее часто встречающийся в группе элемент. На практике обычно мода определяется путём опросов и сбора мнений. Да, действительно порой бывают случаи, когда лучшим способом получить наиболее репрезентативный образец данных является сбор откликов.
Ну, скажем, вы планируете вечеринку, и вам нужно выбрать день для её проведения. Дни недели — такой же числовой ряд, что и любой другой. Это всего лишь числа от 1 до 7. Среднее арифметическое и медиана тут не помогут (Лиза и Паша могут в пятницу, а Коля и Петя — в воскресенье; поэтому назначим субботу). Что делать в таком случае? Конечно, выбрать тот день, который выберет большинство.
Как правило, мода используется для получения наиболее репрезентативного значения в нечисловых рядах. Популярные цвета в сезоне, хиты продаж, рейтинги фильмов и музыки, лучшие кафе и закусочные определяются именно по моде.
Среднее геометрическое
Наш «усреднённый элемент» зависит от того, что мы делаем с уже существующими элементами группы данных. В большинстве случаев элементы просто складываются, и среднее арифметическое прекрасно работает. Но иногда нам нужно что-то большее. Например, когда мы работаем с инвестициями, площадью и объёмом. В таких случаях данные взаимодействуют между собой именно путём умножения (ожидаемая доходность, объём или площадь фигуры вычисляются с помощью умножения), и это меняет наш подход к выявлению средних значений.
Вот пример. Какой инвестиционный портфель вы предпочтёте? Иными словами, какой из них принесёт большую прибыль в течение типичного года?
Выглядят они похоже. Наша повседневная логика, построенная на привычке к среднему арифметическому, говорит нам, что оба портфеля достаточно рискованны, и оба в среднем приведут к убыткам или нулевой прибыли. Поэтому, наверное, мы выберем портфель Б, поскольку в успешный год он принесёт больше прибыли.
И это неверно! На фондовом рынке с таким подходом мы с вами точно бы прогорели. Проценты с инвестиций умножаются, а не складываются. Мы не можем просто взять и использовать среднее арифметическое, нам нужно найти действительный коэффициент окупаемости. Коэффициент окупаемости считается достаточно просто: берём условные 100% нашего текущего капитала в качестве единицы. Далее представляем колебания доходности-убытка, представленные в описании портфелей, добавляя к нашей единице или вычитая из неё процентные показатели. Затем перемножаем полученные колебания и получаем коэффициент. Для расчёта среднегодового значения коэффициента окупаемости делим полученный коэффициент на 4 (поскольку элементов в нашем числовом ряду четыре).
Коэффициент окупаемости: 1,1 * 0,9 * 1,1 * 0,9 = 0,98 (2% убытка)
Среднегодовое значение: (0,98)^(1/4) = 0,5% годового убытка
Коэффициент окупаемости: 1,3 * 0,7 * 1,3 * 0,7 = 0,83 (17% убытка)
Среднегодовое значение: (0,83)^(1/4) = 4,6% годового убытка
Выбор между 2% или 17%? Огромная разница! Конечно, разумный человек отказался бы от обоих портфелей, но из двух зол лучше выбрать Портфель А. И именно здесь среднее арифметическое не работает.
Несколько примеров, где работает среднее геометрическое:
Среднее геометрическое помогает найти «типичный элемент» среди группы элементов, взаимодействующих друг с другом путём умножения. И, как видим, у него множество практических применений.
Среднее гармоническое
Среднее гармоническое представить сложнее, чем предыдущих представителей «средних», но оно не менее полезно. Между прочим, само понятие «гармоники» в математике связано с обратными числами (1/2, 1/3 и т.д.). Среднее гармоническое помогает нам вычислить среднее арифметическое в рядах чисел, заданных обратными значениями. Это случается чаще, чем вы можете подумать.
Например, если я еду со скоростью 30 км/ч, это значит, что я получаю определённый результат (30 км) за какую-либо единицу времени (1 час). Когда мы хотим узнать среднее значение для нескольких скоростей (Х и Y), нужно думать о результате и единицах измерения, а не об исходных цифрах.
средняя скорость = общий результат/общая единица измерения
Возьмём двух работников: Х и Y. Оба работают в одном проекте и выполняют одинаковое количество работы, но скорость их работы разная. Какова средняя скорость их работы?
Скажем, работник Х кладёт 30 кирпичей в час, а работник Y — 60 кирпичей в час. Значит, на один кирпич у каждого работника уходит:
Складываем результаты и единицы измерения:
Общий результат: 2 кирпича (Х и Y уложили по одному) Общая единица времени: 1/X + 1/Y (у каждого уходит разное количество времени)
Средней скоростью обоих работников будет:
Если бы у нас было 3 работника (X, Y и Z), их средняя скорость вычислялась бы по формуле:
Здорово же иметь одну формулу вместо того, чтобы каждый раз заниматься долгими вычислениями. Даже вычисляя среднюю скорость 5 нерадивых работников стало бы головной болью. Помните наш первый пример про скорость, с которой вы едете на работу и домой? Чтобы найти среднюю скорость вашего передвижения в тот день, мы просто используем формулу.
При этом нам даже не нужно знать, где находится дом или офис! Теперь вместо X и Y у нас не кирпичи, а количество километров за единицу времени. Вне зависимости от расстояния результат один и тот же: допустим, некое количество километров R мы проходим на скорости X, а другое количество километров R — на скорости Y. Средняя скорость при этом будет вычисляться так же, как вычисляется средняя скорость прохождения 1 км на скорости X и одного километра на скорости Y:
Ключевая идея: Среднее гармоническое используется тогда, когда один и тот же объём работы выполняется на разных скоростях.
Ещё более ключевая идея: Помните, что среднее значение — это один элемент, способный передать суть целой группы элементов. В нашем примере с работой и офисой в среднем туда-обратно мы едем на скорости 40 км/ч (вместо 30 км/ч туда и 60 км/ч обратно). Важно помнить, что средней скоростью мы заменяем каждую «стадию».
Ещё несколько примеров из жизни среднего гармонического:
В чём здесь фокус?
Среднее гармоническое действительно не самая очевидная вещь. Дело в том, что если бы у вас было две разных установки, одна из которых работает со скоростью 10 деталей/час, а другая — 20 деталей/час, конечно, их средняя производительность составляла бы 15 деталей/час. В этом случае вы имеете полное право просто сложить их производительность и вычислить среднее арифметическое, ведь установки работают независимо друг от друга.
Если не верите в среднее гармоническое, можно устроить себе обратную проверку. Мы утверждаем, что наша универсальная установка по заготовке и полировке деталей справляется с 7,14 деталями в час. Проверим: мы знаем, что за час машина либо обрабатывает 25 деталей, либо полирует 10. Получаем:
Подготовка: 7,14/25 = 0,29 часов Полировка: 7,14/10 = 0,71 часов
Да-да, 0,29 + 0,71 = 1, цифры работают: для полного цикла изготовления 7,14 деталей действительно требуется один час.
В качестве заключения
Даже такая простая на первый взгляд идея, как «среднее значение», имеет множество применений. Мы здесь рассмотрели лишь самые основные и не затронули средневзвешенное, центр тяжести, математическое ожидание и многое другое. Но мы поняли главные принципы: