зачем нужны дифференциальные уравнения
Где применяются дифференциальные уравнения
Содержание статьи
В биологии:
Первой содержательной математической моделью, описывающей биологические сообщества была модель Лотки — Вольтерры. Она описывает популяцию, состоящую из двух взаимодействующих видов. Первый из них, именуемый хищниками, при отсутствии второго вымирает по закону x′ = –ax (a > 0), а второй — жертвы — при отсутствии хищников неограниченно размножается в соответствии с законом Мальтуса. Взаимодействие двух этих видов моделируется так. Жертвы вымирают со скоростью, равной числу встреч хищников и жертв, которое в данной модели предполагается пропорциональным численности обеих популяций, т. е. равной dxy (d > 0). Поэтому y′ = by – dxy. Хищники же размножаются со скоростью, пропорциональной числу съеденных жертв: x′ = –ax + cxy (c > 0). Система уравнений
x′ = –ax + cxy, (1)
y′ = by – dxy, (2)
описывающая такую популяцию хищник — жертва и называется системой (или моделью) Лотки — Вольтерры.
В физике:
Второй закон Ньютона можно записать в форме дифференциального уравнения
m((d^2)x)/(dt^2) = F(x,t),
где m — масса тела, x — его координата, F(x, t) — сила, действующая на тело с координатой x в момент времени t. Его решением является траектория движения тела под действием указанной силы.
В экономике:
Модель естественного роста выпуска
Будем полагать, что некоторая продукция продается по фиксированной цене Р. Обозначим через Q(t) количество продукции, реализованной на момент времени t; тогда на этот момент времени получен доход, равный PQ(t). Пусть часть указанного дохода расходуется на инвестиции в производство реализуемой продукции, т.е.
I(t)=mPQ(t), (1)
где m — норма инвестиции — постоянное число, причем 0
Зачем нужны дифференциальные уравнения?
Ну и да, не сочтите за навязчивую рекламу, но это же мой пост, всё-таки.
В общем, я уже некоторое время занимаюсь репетиторством. Готовлю школьников к экзаменам, помогаю студентам освоиться в математике. Судя по отзывам, объясняю вполне себе доходчиво и интересно. А сейчас как раз в расписании появилась ещё пара мест для новых людей. Так что, если вдруг вам надо к чему-то подготовиться, что-то подтянуть, понять и т.п., обращайтесь, будем думать =Ъ
порядок изучения основ матанализа у нормальных людей:
1) теория множеств, функции и теория пределов.
2) дифференциальное и интегральное исчисление.
3) ряды
в школе:
1) функции
2) дифференциальное и интегральное исчисление
. Полезные практические знания пришли не от «теоретического трёпа», (как бы нас ни старались обмануть СТАНДАРТНЫМИ попугайскими сказками на эту тему)! «Теорию» подгоняют потом.
Вот если б мне так в школе объяснили, то я бы всё равно ничего не поняла.
Но автору плюсище за попытку обратить гуманитариев в технарей!)
Что такое наука и какие задачи она должна решать? Существует ли музыкальная наука и какими могут быть результаты применения научного метода в этой сфере? Что такое микрохроматика и как она может изменить музыку будущего, расширить возможности её создания и восприятия?
Реставрирую шкаф
Работа не быстрая, поэтому фото до. Нашел в нем тайник, в тайнике фото.
Интересует, что за формула на доске?
Пока ответа не нашлось.
Шкаф в СПБ. Ещё была найдена карта Казани печать старая начало 20 века.
Что, если наш 4D мир станет пятимерным?
Краткая текстовая версия видео:
Мир, в котором мы живем, является четырехмерным. По крайней мере в макро масштабе. В нашем мире 3 пространственных измерения и одно временное. Трехмерность пространства значит, например, то, что мы можем в нем провести три взаимно перпендикулярных координатных осей расположенных под углом 90 градусов. В таком пространстве можно двигаться «влево-вправо», «вперед-назад» и «вверх-вниз».
В трехмерном пространстве мы можем завязать узел. В двумерном пространстве завязать узел невозможно. А еще в трехмерном пространстве стул может стоять только на трех ножках или больше, стул на двух ножках потеряет равновесие и упадет (Речь идет о ножках типа такого, как на фото).
А что будет, если мы добавим еще одно пространственное измерение? То есть представим себе пятимерный мир, 4 пространственных измерения и 1 временное?
В таком мире можно провести еще одну ось перпендикулярную к остальным трем осям под углом 90 градусов. В трехмерном пространстве сделать это невозможно и как-то точно визуализировать я это не могу, так что включайте фантазию.
В пятимерном мире так же добавятся новые направления движения, которые называют «ана-ката», получается: «влево-вправо», «вперед-назад», «вверх-вниз» и «ана»-«ката». Представить себе направление движения ана и ката мы не можем, так же как существо в двумерном мире не может представить себе направления вверх и вниз.
В таком мире можно завязать двумерную сферу на узел, в нашем мире сделать это невозможно, показать, соответственно, тоже нельзя. Ну и стул с тремя ножками не сможет стоять в мире с 4 пространственными измерениями, чтобы он был устойчив потребуется 4 или больше ножек.
Ну хорошо, я понимаю, вы вряд ли Вы читаете это, чтобы узнать о узлах и ножках стула, Вас интересует, что будет с нашим миром, если внезапно в него добавить еще одно измерение, вот так по щелчку пальца «тыц» и добавили еще одно пространственное измерение и вот ты уже в 5 измерении, что с тобой будет?
Если коротко то… умрешь конечно же. А еще Земля станет приплюснутой. Сейчас расскажу как именно умрешь и почему земля станет приплюснутой.
Есть такой закон – закон обратных квадратов, и он тесно связан с размерностью пространства. Возьмем для примера светящий фонарь, интенсивность света в таком случае убывает согласно закону обратных квадратов.
Объект, перемещенный на расстояние в 2 раза большее от источника, получает только четверть той мощности, которую он получал в первоначальном положении. На расстоянии в 3 раза большее от источника – в 9 раз меньше мощности, на расстоянии в 4 раза большее от источника – 16 раз и так далее.
В законе всемирного тяготения сила гравитационного притяжения убывает тоже с квадратом расстояния. В два раза увеличиваем расстояние, сила притяжения уменьшается в 4 раза и так далее. Тоже самое с законом Кулона – сила притяжения или отталкивания заряженных частиц убывает с квадратом расстояния. В 5D мире закон обратных квадратов превращается в закон обратных кубов. Теперь интенсивность света будет падать не с квадратом расстояния, а с кубом расстояния. r^2 в законе Кулона и Законе всемирного тяготения превращается в r^3.
Это все полностью изменит химические элементы из которых мы состоим, некоторые атомы станут нестабильными, радиоактивными, другие наоборот, станут стабильными.
Например, в 5D мире магний был бы благородным газом, а не металлом, то есть некоторые элементы станут менее реактивными, другие более реактивными. Ионизация атомов будет осуществляться при значительно меньших энергиях, да и вообще агрегатное состояние различных элементов будет меняться не так, как в нашем мире, некоторые хим. элементы станут газообразны при комнатной температуре, некоторые затвердеют и такие вот вещи. Думаю, практически бессмысленно вспоминать биологические процессы, благодаря которым мы можем жить, ведь это все поменяется кардинально, мы мгновенно потеряем сознание и умрем, синтез белков, транспортировка различных аминокислот, нейромедиаторов, нервные импульсы, это все либо прекратится, либо изменится до неузнаваемости. Ну и конечно же спектры атомов изменятся, а это значит, что все резко поменяет цвет, что-то станет прозрачным, что-то непрозрачным, да и вообще привычные для нас источники света выглядели бы более тускло из-за r^3, с запахами та же история, правда уже некому будет смотреть и нюхать все это, ведь все живые существа погибнут.
Короче будет происходить полная жесть, что-то будет плавится, что-то превратится в газ, что-то затвердеет, некоторые вещества станут радиоактивными, привычные нам вещи потеряют свои свойства и перестанут работать так, как в нашем мире. Я напомню, что это все в мире, в котором 4 пространственных измерения и одно временное и в котором можно двигаться в направлении ана и ката. Но кроме дополнительного направления появятся также дополнительные степени свободы во вращении. В нашем мире ориентацию тела можно задать тремя углами, в быту это называется «наклон, подъём и поворот», в 5D мире надо представить себе еще 3 дополнительных степени свободы вращения перпендикулярные к 3 вышеупомянутым. Но по идее, на вращение Земли это не должно повлиять, момент импульса сохранится, ведь нужно, чтобы какая-то сила передала момент импульса Земле, чтобы она могла вращаться в какой-то непривычный для нас способ. Конечно Земля изменит свой привычный облик, из-за того, что свойства химических элементов изменятся, но из-за гравитации все должно также удерживаться вокруг центра масс, правда земля довольно быстро вращается, а так как гравитация в 5D мире у нас ослабевает с кубом расстояния, то земля сплюснется и формой будет напоминать что-то типа такого, как на картинке.
Но вообще, появится дополнительное направление, в котором могут двигаться частицы из которых состоит земля, планета начнет превращаться в гиперсферу, представить себе этот процесс, эти метаморфозы которые будут происходить, очень сложно.
Будут ли происходить термоядерные реакции на солнце, тут под вопросом, но изменения явно произойдут. Но вот что забавно – в пятимерном мире нет стабильных орбит. Вот, посмотрите на график, это моделирование классической задачи двух тел, оказывается, что устойчивых орбит в 5D мире нет, тела либо падают друг на друга, либо улетают в бесконечность, поэтому солнечная система, как и все другие системы, разрушится, некоторые тела упадут на другие тела, а некоторые улетят бороздить просторы галактики.
Казалось бы, следуя логике как с законом обратных квадратов, все квадраты в других уравнениях тоже надо заменить на кубы и получается, что формула эквивалентности массы и энергии в пятимерном пространстве будет работать как Е=мс в кубе, но нет, эта формула, как и множество других, не изменятся в пятимерном пространстве, она, как и множество других формул, не зависит от размерности пространства.
Но даже и без этого всего, мир в 5 мерном пространстве изменится настолько, что в нем не сможет существовать жизнь в том виде, в котором существует в четырехмерном пространстве. Вообще, оказывается, четырехмерный мир – самый простой из возможных и одновременно самый оптимальный для существования в нем жизни, стабильных орбит и химии, какой мы ее знаем.
Книга Кипа Торна, «Интерстеллар. Наука за кадром»
Что такое дифференциальное уравнение и зачем оно нужно?
На сегодняшний день одним из важнейших навыков для любого специалиста является умение решать дифференциальные уравнения. Решение дифференциальных уравнений – без этого не обходится ни одна прикладная задача, будь это расчет какого-либо физического параметра или моделирование изменений в результате принятой макроэкономической политики. Эти уравнения также важны для ряда других наук, таких как химия, биология, медицина и т.д. Ниже мы приведем пример использования дифференциальных уравнений в экономике, но перед этим кратко расскажем об основных типах уравнений.
Дифференциальные уравнения – простейшие виды
Мудрецы говорили, что законы нашей вселенной написаны на математическом языке. Конечно, в алгебре есть много примеров различных уравнений, но это, большей частью, учебные примеры, неприменимые на практике. По-настоящему интересная математика начинается, когда мы хотим описать процессы, протекающие в реальной жизни. Но как отразить фактор времени, которому подчиняются реальные процессы – инфляция, выработка продукции или демографические показатели?
Вспомним одно важное определение из курса математики, касающееся производной функции. Производная является скоростью изменения функции, следовательно, она может помочь нам отразить фактор времени в уравнении.
То есть, мы составляем уравнение с функцией, которая описывает интересующий нас показатель и добавляем в уравнение производную этой функции. Это и есть дифференциальное уравнение. А теперь перейдем к простейшим типам дифференциальных уравнений для чайников.
Есть более сложные виды уравнений – уравнения второго, третьего и вообще произвольного порядка, однородные и неоднородные уравнения, а также системы дифференциальных уравнений. Для их решения нужна предварительная подготовка и опыт решения более простых задач.
Большое значение для физики и, что неожиданно, финансов имеют так называемые дифференциальные уравнения в частных производных. Это значит, что искомая функция зависит от нескольких переменных одновременно. Например, уравнение Блека-Шоулса из области финансового инжиниринга описывает стоимость опциона (вид ценной бумаги) в зависимости от его доходности, размера выплат, а также сроков начала и конца выплат. Решение дифференциального уравнения в частных производных довольно сложное, обычно нужно использовать специальные программы, такие как Matlab или Maple.
Пример применения дифференциального уравнения в экономике
Приведем, как и было обещано, простой пример решения дифференциального уравнения. Вначале поставим задачу.
Как видно из задачи, это прикладной пример из микроэкономики. Множество фирм и предприятий постоянно сталкивается с подобными расчетами в ходе своей деятельности.
Приступаем к решению. Как известно из микроэкономики, маржинальная выручка представляет собой производную от общей выручки, причем выручка равна нулю при нулевом уровне продаж.
Другие примеры по разным типам ДУ собраны на странице: Дифференциальные уравнения с решениями онлайн.
Откуда берутся дифференциальные уравнения?
Владимир Побережный
Математик Владимир Побережный об экспонентах, источниках дифференциальных уравнений и векторном пространстве функций.
Что такое дифференциальные уравнения? Это уравнения на какую-то неизвестную функцию или соотношения, которым должна удовлетворять эта функция и какие-то ее производные (если функция одной переменной, то просто производные, если функция многих переменных, то частные производные). Это обобщение наших обычных уравнений, например алгебраических. Мы сначала учим в школе линейные уравнения, их графики дают прямые на плоскости — бывают квадратичные, кубические и так далее. Это все алгебраические уравнения. Можно брать более сложные функции и более сложные уравнения, они дают какие-то более сложные графики. Объекты, которые они описывают, становятся более сложными, то есть линейные уравнения рисуют прямые, квадратичные — параболы, это все какие-то графики на плоскости или в более общем случае в большой размерности, какие-то поверхности в пространстве той или другой размерности. Поверхности или более сложные объекты, сделанные из поверхностей, — так называемые многообразия и так далее.
Дифференциальные уравнения — это следующий шаг. Уравнения, которые мы сейчас перечислили, задают в пространстве какие-то точки, подмножества точек. Уравнение задает множество точек на плоскости, и мы знаем, что эти точки выглядят как прямая. Это и есть график. Дифференциальные уравнения тоже задают какие-то подмножества, но они заданы уже в пространстве функций, то есть это соотношения, которым удовлетворяют функции. Решение дифференциального уравнения — это какой-то набор подмножества точек в пространстве функций. Пространство функций является бесконечномерным.
Возникает нужда в анализе: как это все устроено и почему мы вообще на это так смотрим? Такой взгляд действительно имеет вполне разумное содержание и смысл. Если мы рассматриваем линейные дифференциальные уравнения, то у нас возникает аналогия с обычными линейными уравнениями. Например, мы знаем, что линейные уравнения на плоскости — это прямая, в пространстве — какая-то гиперплоскость. То есть это какой-то плоский объект. Оказывается, что множество функций, удовлетворяющих линейному дифференциальному уравнению, устроено примерно так же, это в каком-то смысле плоскость, или прямая, или плоскость какой-то размерности, но уже в бесконечномерном пространстве функций (официально это называется векторным пространством). Множество решений линейного дифференциального уравнения образует векторное пространство во множестве всех функций.
Физика не единственный источник этих уравнений. Практически любая околоестественная наука является таким источником. Например, в химии происходят какие-то реакции, скорость реакций зависит от количества и пропорций компонентов. Два вещества смешиваются и как-то превращаются в третье с какой-то скоростью, пропорциональной чему-то. Это дифференциальные уравнения. В биологии тоже есть дифференциальные уравнения.
Эта модель, очевидно, не дает нам правильного приближения к жизни, на маленьких порядках немножко дает. С другой стороны, если бы все было в жизни устроено так, то кролики очень быстро бы захватили всю землю во много слоев, некуда было бы между ними наступить. Значит, надо как-то менять наше уравнение, подстраивать свойства модели под картинку, которую мы наблюдаем в жизни, и то, чему хотим быть адекватными. Например, чем больше кроликов, чем чаще они встречаются, тем больше вероятность, что у них возникнет какая-нибудь болезнь, которая будет заразной и будет передаваться от одного к другому, то есть надо вычесть какое-то слагаемое, пропорциональное частоте встреч. А как устроена частота встреч? Если кролики живут в каком-то лесу, каждый кролик занимает какое-то место, надо поделить площадь леса на площадь кроликов и так далее.
Можно строить разные модели, как-то их усложнять, исследовать те интересные вопросы, которые возникают почти в любом приложении, где как-то используется математика. Но математика ради математики здесь тоже имеется: дифференциальные уравнения — это очень большой отдельный разнообразный раздел со множеством вариаций. Он настолько большой, что даже практически не бывает конференций по дифференциальным уравнениям, потому что нужно более тонкое деление: качественная теория, асимптотические методы, интегрируемые системы, уравнения в частных производных и так далее. Это вполне большая развитая наука, продолжающая развиваться.
Какие основные свойства и характеристики есть у дифференциальных уравнений? Что можно о них сказать? Во-первых, краеугольный камень для обыкновенных дифференциальных уравнений для одной переменной (неважно, вещественной или комплексной, комплексной даже лучше, как всегда это устроено в анализе) — это теорема существования и единственности. Если у вас есть дифференциальное уравнение с достаточно разумными коэффициентами (эти слова формализуются разными способами, например гладкие) и есть начальные данные, то всегда есть локальное решение. Например, вы знаете, что ваш камень как-то падает, знаете, где он был в начальный момент времени и какая у него была в начальный момент времени скорость. После этого у него траектория считается по крайней мере локально, в окрестности этого положения.
Это специфика обыкновенных уравнений от одной переменной, но при этом все-таки уравнение локально решается, то есть мы знаем, что решение существует, а вот найти его мы в явном виде можем не всегда. Мы можем использовать какие-то приближенные методы, как-то бороться, но гарантий, что мы напишем какое-то конечное выражение и оно будет решать наше уравнение, нет.
Это была деятельность XIX века, когда люди активно занимались этой областью и изучали уравнения математической физики, из этого возникла целая наука про классические многочленные специальные функции Лежандра, Лагерра, Чебышева. Это была попытка как-то решать уравнения, которые возникали при тогдашнем развитии науки. В явном и конечном виде решения не выписывались, но это совершенно не мешало заниматься их анализом: исследовать свойства, связи, асимптотики. Современная наука занимается более сложными уравнениями. Сейчас, например, вполне популярная деятельность — исследование уравнений Пенлеве. Это такие новые специальные функции — решения уравнений Пенлеве, сейчас занимаются их исследованиями, асимптотикой, связями, геометрическим смыслом, содержанием и так далее по аналогии с физикой XIX века.
Научный форум dxdy
Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки
Не решился пойти прямо к математикам 🙂 Зачем нам дифуры?
Сразу поясню, что я здесь новенький.
Моя научная деятельность до этого времени была не особенно связана с математикой. Как правило все ограничивалось уравнениями регрессии или статистикой.
Все что я увидел из доступного объяснения: «Определенный тип задач требует применение ДУ. ДУ это. » уравнения содержащие независимую переменную, функцию от нее и производную. А что это дает?
Если я не указал какой-либо важной информации, могу дополнить свое «Введение» в проблему.
Заранее спасибо и надеюсь услышать отзывы.
ЗЫ: Я ОЧЕНЬ хочу разобраться с этим вопросом и мое обращение на форум скорее знак того что сам я уже не потяну всего прочитанного «обобщить».
Заслуженный участник |
Экс-модератор |
Большое спасибо протянувшим руку помощи.
Чего я хочу от модели?
Задавая например влажность почвы и показатель плодородия (пока только по азоту) хотелось бы получить расчетную высоту растения.
Если чего не добавил, прошу уточнить. Допишу.
зы:
(В планах хотелось бы добавить еще несколько важнейших критериев, как например интенсивность освещения, влияние фосфора, температуру окружающей среды, относительную влажность воздуха. Для каждого из данных критериев я могу позднее провести лабораторный опыт и посмотреть как изменяется действительный прирост.)
Заслуженный участник |
Это начало прошедшего века.
Эта ссылка соответствует середине прошедшего века. (Ой, да еще и 2005 год..) Хотя никто не говорит, что эти модели не соответствуют действительности.
Я думаю, что Вам вряд ли следует углубляться в детали в следующей книге, но тут есть некоторые из современных методов (хотя уже не новинка. ). Чтобы составлять современные модели, надо очень хорошо разбираться в уже существующих и моделируемом явлении. Я в лесе не разбираюсь, хотя методами динамических система пользуюсь, поэтому давайте попробуем начать с самого простого.
Что именно за растение или растения вы моделируете? Вас интересует модель одновременного роста нескольких растений или нет? Какую роль будет играть почва? (Надо ли ее выделять в отдельную переменную). Остается ли она постоянной и только добавляются удобрения? Если смотреть на высоту вашего растения, то это явно не лес.. То есть вряд ли переменной будет биомасса, скорее высота растения.
Добавлено спустя 7 минут 11 секунд:
Хорошо, пользуясь тем что никто не видит моего стыда, спрошу прямо «в лоб».
1) Приведенная здесь «Базовая модель» включает два уравнения:
Объясните мне пожалуйста, откуда автор взял например переменные уравнения
du/dt= (kCV-D)*u в этой модели:
Заслуженный участник |
Хорошо, пользуясь тем что никто не видит моего стыда, спрошу прямо «в лоб».
1) Приведенная здесь «Базовая модель» включает два уравнения:
Объясните мне пожалуйста, откуда автор взял например переменные уравнения
du/dt= (kCV-D)*u в этой модели:
3) Дифференциальные, потому что входят функции и их производные..
2) Вы можете подставить конкретные численные значения параметров и проинтегрировать и получите обобщенный показатель плодородия и объем биомассы с течением времени для этого случая.
Да, афтор где-то так и рассуждал (на основе экспериментальных фактов). Только вид уменьшается за счет естественной смертности деревьев, поэтому это слагаемое идет со знаком минус. Вряд ли конкуренция идет на пользу деревьям, скорее гасит их рост, потому и вводится какой-то коэффициент конкуренции.
- зачем нужны диски на колеса
- зачем нужны дифференциальные формы