зачем нужно распознавание лиц
Как работает распознавание лиц? Разбор
Среднестатистический человек может идентифицировать знакомое лицо в толпе с точностью 97,53%. Вы скажете, это немало и будете правы. Но это ничто по сравнению с современными алгоритмами, которые добились точности 99,8% еще в 2014 году. А в последние несколько лет они достигли практически совершенства! Современный алгоритм, использующийся в камерах видеонаблюдения в Москве способен обрабатывать 1 миллиард изображений менее чем за полсекунды с точностью близкой к 100%.
Этот алгоритм насколько крут, что уже в этом году в Московском Метро планируют ввести систему прохода по лицу — FacePay. При этом нам обещают, что система будет работать даже если человек в медицинской маске.
Как вы понимаете, жизнь уже не будет прежней. Поэтому давайте разберемся:
Причины
Этап 1. Обнаружение
В первую очередь, для того, чтобы лицо распознать, надо его сначала обнаружить. Задача на самом деле не тривиальная. Для этого мы бы могли использовать натренированные нейросети, но это слишком долго, дорого и ресурсоемко. Поэтому для обнаружения лица используется очень простой метод Виолы — Джонса, разработанный еще в 2001 году.
Как эта штука работает?
Этот алгоритм просто сканирует изображение при помощи вот таких прямоугольников, они называются примитивами Хаара:
И еще вот таких прямоугольников:
Задача этих объектов — находить более светлые и темные области на изображении, характерных конкретно для человеческих лиц.
Например, если усреднить значения яркости область глаз будет темнее щек или лба, а переносица будет светлее бровей.
В общем таких характерных признаков много и естественно не только у человеческих лиц могут быть подобные паттерны. Поэтому алгоритм работает в несколько этапов:
Сначала находится первый признак, система понимает: «В этой области может быть лицо». Тогда она начинает там же искать второй признак, а потом третий. И если в одной области найдено 3 признака, уже можно уверенно сказать — да, это лицо! После чего система получает область изображения, в котором есть только лицо.
Этап 2. Антропометрические точки
Получив область для анализа, дальше в дело вступает главный секрет каждой системы распознавания — биометрический алгоритм.
Он расставляет на лице антропометрические точки, по которым впоследствии и будут вычисляться индивидуальные характеристики человека: разрез глаз, форма носа, подбородка, расстояние между ними и прочее. Таких признаков может быть много, вплоть до нескольких тысяч. Но в целом, таких точек должно быть как минимум 68.
Этап 3. Исправление искажений
А дальше начинается настоящая магия. В идеале нам нужно лицо, которое смотрит анфас, то есть прямо в камеру. Но такая удача бывает редко, особенно если речь идет о распознавании человека в толпе.
Поэтому система производит дополнительное преобразование изображения: устранятся поворот и наклон головы. А также проводится 3D-реконструкция лица из 2D-изображения. Таким образом, даже если человек на изображении смотрел вбок, мы всё равно можем получить четкий фронтальный снимок, что существенно повышает качество распознавания.
Этап 4. Вектор лица
Ну а дальше происходит самое главное. В бой вступает нейросеть, которая присваивает каждому лицу вектор признаков. Что это такое?
По сути, это просто какое-то число, которое складывается из суммы характеристик лица: расстояний между опорными точками, текстуры определенных областей на лице и прочее. Таких характеристик может быть множество. Основное правило: они должны описывать лицо независимо от посторонних факторов: макияжа, прически, возрастных изменений.
Этап 5. Идентификация
Ну а дальше остаётся сравнить полученный вектор с базой других векторов. И готово. Система вас идентифицировала.
Где и как используется?
Помимо очевидных кейсов применения, помимо обнаружения правонарушителей в общественных пространствах и оплаты билетов в метро. Где и как могут применяться эти технологии?
Во-первых, системы могут быть настроены не на идентификацию а на анализ поведения или настроения. В такси можно можно быстро вычислять неадекватных водителей или пассажиров. В магазинах, можно находить грустных покупателей и повышать уровень сервиса. Ритейлеры одежды или продуктовые магазины используют камеры для анализа поведения покупателя, чтобы проанализировать настроение покупателя на кассе. Или например в школах, можно искать скучающих детей и корректировать программу обучения. Так, кстати уже делают в Китае. Вот такой мир будущего, и мы уже в нём живём не зная этого.
Что будет в будущем?
Чего же нам ждать в будущем? Распознавание лиц для разблокировки iPhone, входа в Windows или во время конференций — это прекрасная, удобная технология, упрощающая жизнь и мы уже ей пользуемся. Но вот повсеместные камеры наблюдения в городах рисуют в воображении самые мрачные картины в духе Джорджа Оруэлла.
Отсюда возникает вопрос — можно ли защитить себя от систем видеонаблюдения? Конечно, с развитием технологий развиваются и средства обхода этих технологий.
Люди придумывают макияж и украшения, которые сбивают с толку алгоритм обнаружения лиц, тот самый из 2001 года, создают инфракрасные очки, засвечивающие сенсоры камер, а также делают всякую криповую одежду и маски.
Но по большому счету такой лук скорее больше привлечет внимания, а алгоритмы подстроятся под обманки. Поэтому единственный способ защиты — это закон. Бизнес активно не внедряет системы распознавания лиц только потому, что это несет большие юридические издержки. В ЕС активно разрабатывается новый закон, который уже прозвали GDPR 2: он будет строго регулировать системы распознавания лиц и прочие системы искусственного интеллекта, вызывающие законные опасения.
В России с этим пока что не так хорошо. Тем не менее отечественные компании, которые присутствуют на международном рынке также будут вынуждены соблюдать новые правила игры, как произошло с первым GDPR.
То есть, как вы поняли, есть светлая сторона технологии, которая упрощает нам жизнь и темная, что приближает нас к миру большого брата.
Безопасность или угроза свободе: зачем обществу распознавание лиц
В мае городской совет Сан-Франциско запретил полиции и другим местным органам власти использовать технологию распознавания лиц. Власть приняла позицию правозащитников: технология может использоваться не только для поимки преступников, но и как инструмент тотальной слежки за гражданами.
Действительно ли система распознавания лиц представляет угрозу гражданским свободам? И станет ли этот запрет прецедентом для мировой общественности?
Спустя несколько дней после решения совета Сан-Франциско, 18 мая, в The New York Times вышел материал про то, как по всей Америке технология распознавания лиц помогает отправлять преступников за решетку.
В частности, подозреваемого в сексуальном нападении на 15-летнего подростка в Пенсильвании не могли вычислить около трех лет. Несмотря на то, что перед преступлением он сам отправил пострадавшему свое фото — пусть и нечеткое. Журналист сделал вывод, что без системы распознавания лиц у полиции не было шанса поймать преступника.
Что произошло в Сан-Франциско
США исторически позиционируют себя как оплот демократии, где сильно развиты гражданские права и свободы. Любое их притеснение остро воспринимается общественностью и правозащитниками.
Всего в США установлено порядка 50 млн камер видеонаблюдения. Это в 4 раза меньше, чем в Китае, и почти в 12 раз больше, чем в Великобритании. С помощью видеонаблюдения в США в 2010-2016 годах было арестовано более 2 800 преступников, а в 2018 полицейские продвинулись в раскрытии более 8 000 дел.
На данный момент в США нет федерального закона, регламентирующего применение технологии распознавания лиц. Правила обработки биометрических данных законодательно закреплены только в некоторых штатах. Например, в штате Иллинойс закон BIPA (Biometric Information Privacy Act) обязывает организации, которые собирают биометрические данные, информировать об этом граждан и в письменной форме объяснять, зачем это делается.
Калифорния стоит особняком в вопросе защиты биометрических данных. В 2018 году был принят закон CCPA (California Сonsumer Privacy Act). Согласно ему, с конца 2020 года все фотографии человека будут приравнены к биометрическим данным, то есть их будет запрещено использовать и обрабатывать без персонального согласия владельца. В первую очередь закон CCPA в нынешней редакции касается бизнеса, собирающего биометрические данные человека. Но закон еще может быть доработан и по отношению к госструктурам.
В начале 2019 года суд Калифорнии постановил, что полицейские не имеют права заставлять людей разблокировать телефон с помощью отпечатка пальца или функции распознавания лица. До этого полицейские имели на это формальные права.
Поэтому недавнее решение совета Сан-Франциско запретить использовать технологию распознавания лиц полицейским выглядит последовательным.
Парадокс происходящего заключается в том, что Сан-Франциско — колыбель мирового технологического прогресса, место, где технологии впервые появляются на свет, а затем находят применение во всем мире. И здесь же они сталкиваются с первыми запретами на использование.
Нужно ли обществу распознавание лиц
Сама технология face recognition способна приносить явную и ощутимую пользу: в начале года московские полицейские поймали похитителя картины из Третьяковки, в метро Шэньчжэня теперь можно оплатить проезд «лицом», а бизнес во всем мире научился предотвращать кражи и узнавать клиентов еще при входе в магазин.
Тем не менее, система распознавания лиц порождает конфликт двух общественных интересов.
Чувство безопасности. Система дает уверенность, что потенциальный преступник не уйдет от правосудия: его поиск становится эффективнее за счет распознавания лиц. Кроме того, информационные технологии позволяют в реальном времени фиксировать сам факт преступления — полиция Китая, например, умеет определять драку по характерным взмахам рук и ног;
Право на конфиденциальность и личное пространство. Для системы наблюдения изначально нет различий между преступником и законопослушным гражданином: за всеми наблюдают одинаково. Здесь простая аналогия: некоторых водителей удивляет и даже оскорбляет, когда их останавливают для проверки документов, — на их взгляд, останавливать должны «только нарушителей». Однако система не может выявить преступника без одинаковых условий для всех объектов. Предугадывать преступления до их совершения умели только в «Особом мнении» Филипа К. Дика.
Никто не против, чтобы видеонаблюдение велось в аэропортах или на социально значимых объектах — вся мировая общественность выступает за безопасность и борьбу с терроризмом.
Наиболее прогрессивные государства регламентируют работу систем распознавания лиц, не ущемляя прав граждан. Например, в Евросоюзе с 2018 года действует закон GDPR, защищающий все биометрические данные человека (в том числе фотографии) от использования и обработки в любых целях, за исключением оказания медицинской помощи или угрозы национальной безопасности.
Но система распознавания лиц в руках некоторых государств вызывает опасения. Всем знаком пример социального рейтинга в Китае. Со стороны (тем, кто никогда там не жил) кажется, что в Китае наступила эра киберпанка — человеческая культура демонстрирует упадок на фоне растущего технологического контроля со стороны властей.
Отчасти тому есть неоднозначные подтверждения. В начале мая была обнаружена открытая база данных жителей двух районов Пекина — она была собрана с помощью системы распознавания лиц. Однако удивительно в этой истории другое: база не была никак защищена. Китай тратит большие деньги на повсеместное внедрение системы распознавания лиц. Но есть ощущение, что эти деньги тратятся больше на устрашение, а не на контроль.
Что будет дальше
Запрет в Сан-Франциско может стать прецедентом для всей Америки. С марта 2019 в Сенате разрабатывается законопроект, который должен сформировать единые правила работы с биометрикой для бизнеса: фотографии будут приравнены к конфиденциальным данным, а их обработка будет запрещена без согласия человека. Законопроект уже поддержали несколько сенаторов и Microsoft.
Не стоит забывать, что инструментов слежки за гражданами у государств всегда хватало и без распознавания лиц. Отследить перемещения человека можно по банковской карте или сим-карте. Нельзя купить билет на поезд или самолет без паспорта. Более того, во многих крупнейших аэропортах мира перед вылетом нужно сдавать отпечатки пальцев — например, в Лос-Анджелесе, Лондоне, Мумбаи, Шэньчжэне.
Технологии могут использоваться и восприниматься по-разному. История показывает, что прогресс можно замедлить, но нельзя остановить. Технологии не стоит запрещать, однако можно и нужно регулировать прикладные аспекты их использования.
Распознавание лиц: как это работает и что с ним будет дальше?
Вы поднимаетесь по лестнице и заходите в лифт. Он знает, на какой этаж вам нужно. Двери в квартиру сами открываются перед вами. Компьютер и телефон «узнают» вас и не требуют ввода пароля. Автомобили, социальные сети, магазины — все приветствуют вас, едва завидев, обращаются к вам по имени и предугадывают каждый ваш шаг. Так работает распознавание лиц. Нравится? Пугает?
Как работает распознавание лиц?
На первый взгляд может показаться, что любая организация, которая может себе такое позволить, следит за каждым вашим шагом, собирает на вас досье. Но вы даже не представляете, как широко технологии распознавания лиц распространились по миру и какие мощные перспективы обещают. Помимо выше приведенных примеров, системы распознавания лиц позволяют делать и такие простые и сложные вещи:
Что говорить, если в одной только Москве уже работает сеть из более 150 000 камер наружного видеонаблюдения. От них никуда не скрыться, и это заставляет людей задумываться, но масштабы «слежки» не настолько велики. Сеть использует мощную систему распознавания лиц, но для ее работы необходимо много энергии, поэтому в режиме реального времени работают всего 2-4 тысячи камер. Массовым слежением за населением пока только пугают, поэтому стоит сосредоточиться на реальных плюсах работы данной технологии. Но обо всем по порядку.
Как работает система распознавания лиц?
Никогда не задумывались о том, как вы сами узнаете лицо, распознаете его? А как это делает компьютер? Конечно, у человеческих лиц есть определенные свойства, которые легко описать. Расстояние между глазами, положение и ширина носа, форма надбровных дуг и подбородка — все эти детали вы подмечаете бессознательно, когда смотрите на другого человека. Компьютер же делает все это с определенной эффективностью и точностью, потому что, совмещая все эти метрики, получает математическую формулу человеческого лица.
Итак, насколько хорошо работает система распознавания лиц в настоящее время? Вполне неплохо, но иногда ошибается. Если вы когда-нибудь сталкивались с ПО, распознающим лица на Facebook или на другой платформе, вы наверняка замечали, что забавных результатов бывает столько же, сколько и точных. И все же, хотя технология работает не со 100-процентной точностью, она достаточно хороша, чтобы найти широкое применение. И даже заставить понервничать.
Биометрика получила широкое распространение
Пол Хоуи из NEC говорит, что их система распознавания лиц сканирует лица на предмет индивидуальных идентификаторов:
«К примеру, многие считают расстояние между глазами уникальной характеристикой. Или же это может быть расстояние от подбородка до лба и другие компоненты. Мы, в частности, учитываем 15-20 факторов, которые считаются важными, а также другие факторы, уже не настолько значимые. Создается трехмерное изображение головы человека, поэтому даже если она частично будет закрыта, мы все равно сможем получить точное соответствие. Затем система берет сигнатуру лица и пропускает ее через базу данных».
Стоит ли переживать о программах, распознающих лица?
Прежде всего, распознавание лиц — это данные. Данные можно собирать и хранить, зачастую без разрешения. Как только информация собрана и сохранена, она открыта и для взлома. Платформы с ПО, распознающим лица, пока не подвергались серьезным взломам, но по мере распространения технологий ваши биометрические данные оказываются в руках все большего числа людей.
Существуют также вопросы владения. Большинство людей не знают, что когда они регистрируются в социальных медиаплатформах вроде Facebook, их данные с этого момента принадлежат этой самой Facebook. Поскольку число компаний, использующих распознавание лиц, постоянно растет, очень скоро даже не придется загружать собственные фотографии в Интернет, чтобы оказаться скомпрометированным. Они уже там хранятся, и хранятся давно.
Говоря о программном обеспечении, все они работают по-разному, но в основе своей используют похожие методы и нейросети. У каждого лица есть множество отличительных признаков (в мире невозможно найти два идентичных лица, а ведь сколько их было за всю историю человечества!). К примеру, программное обеспечение FaceIt определяет эти признаки как узловые точки. Каждое лицо содержит примерно 80 узловых точек, схожих с теми, что мы упоминали прежде: расстояние между глазами, ширина носа, глубина глазных впадин, форма подбородка, длина челюсти. Эти точки измеряются и создают числовой код — «отпечаток лица» — который затем попадает в базу данных.
В прошлом распознавание лиц опиралось на двумерные снимки для сравнения или идентификации других двумерных снимков из базы данных. Для пущей эффективности и точности изображение должно было быть лицом, прямо смотрящим в камеру, с небольшой дисперсией света и без особого выражения лица. Конечно, работало это чертовски плохо.
В большинстве случаев снимки не создавались в подходящей среде. Даже небольшая игра света могла снизить эффективность системы, что приводило к высоким показателям отказа.
На смену 2D пришло 3D-распознавание. Эта недавно появившаяся тенденция в программном обеспечении использует 3D-модель, обеспечивающую высокую точность распознавания лица. Запечатлевая трехмерное изображение поверхности лица человека в реальном времени, ПО выделяет отличительные черты — где больше всего выдаются жесткие ткани и кость, например, кривые глазного гнезда, носа и подбородка — для идентификации субъекта. Эти области уникальны и не меняются со временем.
Построение 3D-модели лица
Используя глубину и ось измерения, на которые не влияет освещение, система трехмерного распознавания лиц может даже использоваться в темноте и распознавать объекты под разными углами (даже в профиль). Подобное программное обеспечение проходит через несколько этапов, идентифицируя человека:
Где используются системы распознавания лиц?
В прошлом системы распознавания лиц находили применение в основном в сфере правоохранения, поскольку органы использовали их для поиска случайных лиц в толпе. Некоторые правительственные учреждения также использовали подобные системы для безопасности и для устранения мошенничества на выборах.
Однако есть много других ситуаций, в которых такое программное обеспечение становится популярным. Системы становятся дешевле, их распространение растет. Теперь они совместимы с камерами и компьютерами, которые используются банками и аэропортами. Туристические агентства работают над программой «бывалого путешественника»: с ее помощью они проводят быстрый скрининг безопасности для пассажиров, которые добровольно предоставляют информацию. Очереди в аэропортах будут продвигаться быстрее, если люди будут проходить через систему распознавания лиц, сопоставляющую лица с внутренней базой данных.
Анонимность не спасёт: ИИ научился узнавать людей, скрывающих лицо
Другие потенциальные применения включают банкоматы и терминалы выдачи наличных денег. Программное обеспечение может быстро проверить лицо клиента. После разрешения клиента банкомат или терминал делает снимок лица. Программное обеспечение создает отпечаток лица, защищающий клиента от кражи личных данных и мошеннических транзакций, — банкомат просто не выдаст деньги человеку с другим лицом. Даже ПИН-код не потребуется. Такие банкоматы уже тестируются по всему миру, в том числе в Москве и Санкт-Петербурге, где это тестирует Сбербанк.
Помимо этого сегодня технология FaceID от Apple прочно вошла в нашу жизнь и те, кто ей пользуется уже не представляют работу смартфона без технологии распознания лица.
Как банки используют распознавание лиц
Особенно важным и интересным может быть развитие технологии распознавания лиц в сфере банковских переводов. На днях российский банк «Открытие» представил собственное уникальное решение, разработанное под технологическим брендом Open Garage: перевод денег по фотографии в мобильном приложении «Открытие.Переводы». Вместо того чтобы вбивать номер карты или телефона, достаточно просто сфотографировать человека, которому нужно сделать перевод. Система распознавания лиц сравнит фото с эталонным (делается, когда банк выдает карту) и подскажет имя и фамилию. Останется только выбрать карту и ввести сумму. Что особенно важно, клиенты сторонних банков также могут использовать эту функцию для переводов клиентам «Открытия» — отправитель переводов может пользоваться картой любого российского банка.
«Использование фотографии клиента вместо номера банковской карты — это принципиально новый подход к онлайн-переводам, основанный на использовании нейросетевой системы распознавания лиц, которая позволяет с высокой степенью точности идентифицировать клиента по его биометрическим данным, — говорит начальник Управления развития партнерских систем банка «Открытие» Алексей Матвеев. — Сервис открывает для пользователей совершенно новые жизненные сценарии для выполнения денежных переводов. В настоящее время ни один из участников финансового рынка в мире не предлагает подобного сервиса своим клиентам».
Мобильное приложение «Открытие. Переводы» можно скачать здесь.
Камеры следят за вами всюду. Как работает система распознавания лиц и нужно ли ее бояться
Камеры уже повсюду. Как нейронные сети следят за нами, нарушает ли это наши права и как изменится пугающая технология в будущем – в материале The Guardian.
Программа распознавания лиц – что это такое?
Сегодня технология распознавания лиц используется повсеместно. Facebook, где вас отмечают на фото с встречи одноклассников, свадьбы вашего кузена или летней вечеринки на работе. В программы Google, Microsoft, Apple и так далее встроены приложения для накопления информации.
Программа распознавания лиц используется в аэропортах, она есть в вашем телефоне – с ее помощью вы можете его разблокировать. И если вам нужно подтвердить свою личность для банковского перевода в £1,000, просто посмотрите в камеру.
Новые приложения появляются все время. Хотите знать, кто стоит за дверью? Видео-дверной звонок с программой распознавания лиц сообщит вам, если вы заранее загрузили фотографии ваших знакомых.
Многочисленные системы используются для обнаружения пропавших без вести и ловли прогульщиков, которые не приходят вовремя на работу. Рекламодатели, конечно, тоже не остаются в стороне. Благодаря программам распознавания лиц на рекламных щитах сегодня появляется тот товар, который интересен именно вам, исходя из оценки вашего пола, возраста и настроения.
Большой Брат здесь? Программа распознавания лиц – инструмент контроля?
В определенных случаях, конечно. Китай использует программу для расового профилирования. Резкую критику получила правительственная практика использования программы для отслеживания и контроля над мусульманами-уйгурами. Камеры с программой распознавания лиц отслеживают и штрафуют пешеходов, отмечают учеников при входе в школу и контролируют выражение их лиц на уроках, чтобы те не отвлекались.
В России технология также используется.
Согласно источникам, Израиль использует распознавание лиц для слежения за палестинцами на Западном берегу реки Иордан. А в Британии полиция столицы и Южного Уэльса опробовала программу распознавания лиц, чтобы находить людей среди футбольных и регбийных толп, на городских улицах, а также на памятных мероприятиях и музыкальных фестивалях. Тейлор Свифт даже использовала программу на концерте в Калифорнии, чтобы отсеять нежелательных посетителей.
В магазинах программа все чаще используется для отпугивания и поимки воров. В следующем году она дебютирует на Олимпийских играх в Токио.
Как технология распространяется?
Большую роль сыграли достижения в трех областях: большие данные (big data), глубокие сверточные нейронные сети и мощные графические процессоры.
Благодаря Instagram, Facebook, Flickr, Google и другим системам в интернете находятся миллиарды фотографий лиц людей, которые были объединены в огромные наборы данных. Они используются для обучения глубоких нейронных сетей – главной опоры современного искусственного интеллекта – для обнаружения и распознавания лиц. Рутинная вычислительная работа обычно выполняется на графических процессорах, сверхбыстрых чипах, которые предназначены для обработки графики. Но за последнее десятилетие системы распознавания лиц распространились повсюду, и данные, собранные по ним, помогли компаниям отточить свои технологии.
Как это работает?
Во-первых, компьютер должен понять, что такое лицо. Научить его можно через алгоритм, обычно глубокой нейронной сети, на примере огромного количества фотографий в различных приложениях. Каждый раз, сталкиваясь с изображением, алгоритм оценивает, где находится лицо. Сначала будет много мусора, но постепенно алгоритм улучшается и в конечном итоге овладевает искусством определения лиц. Это шаг к функции распознавания лиц.
Следующая ступень – распознавание. Обычно используется вторая нейронная сеть. Она получает серию фотографий и учится отличать одно лицо от другого. Некоторые алгоритмы непосредственно отображают лицо, измеряя расстояния между глазами, носом и ртом и так далее. Другие отображают лицо, используя более абстрактные черты. В любом случае, сеть выводит вектор для каждого лица – строку чисел, которая однозначно идентифицирует человека среди других в обучающем блоке.
Программное обеспечение работает с видеоматериалами в режиме реального времени. Компьютер сканирует кадры видео, как правило в местах скопления людей, например на входе на футбольный стадион. И сначала он обнаруживает в кадре лица, а затем выдает векторы для каждого из них. Затем векторы лица сравниваются с векторами лиц людей в розыскном списке. Все совпадения, которые проходят предварительно установленный порог, затем ранжируются и отображаются.
Это не единственный способ, который использует полиция для распознавания лиц. Если подозреваемый замечен, офицеры могут загрузить снимки преступника из базы данных и искать записи с камер видеонаблюдения, чтобы проследить путь подозреваемого до места преступления.
Насколько это точно?
Независимые тесты Национального института стандартов и технологий США (NIST) показали, что за период с 2014 до 2018 года системы распознавания лиц улучшили показатели совпадения по базе портретных фото в 20 раз. Процент сбоев снизился с 4% до 0,2% за этот период, и такое значительное увеличение точности связано с глубокими нейронными сетями. В институте заявили, что сети привели к «промышленной революции» в распознавании лиц.
Но такая отличная производительность возможна в идеальных условиях: при наличии четкого и ясного снимка неизвестного человека, который проверяется по базе данных других высококачественных фотографий. В реальном мире изображения могут быть размытыми или снятыми при плохом освещении, люди могут отвести взгляд от камеры, надеть платок или шарф, или быть намного старше, чем на фотографии на аватарке.
И согласно тестам, проведенным институтом, даже при использовании лучших алгоритмов система дает сбои при попытке различить лица близнецов.
А как насчет системных ошибок?
Проблема возникает, когда нейронные сети обучаются на различном количестве лиц из разных групп людей. Например, если система обучается на миллионе белых мужских лиц, но почти не использует лица женщин и людей с другим цветом кожи, она будет менее точна при попытке распознать последние две группы. Меньшая точность означает больше ошибочных идентификаций, и в результате большее количество людей будут ошибочно задержаны.
В прошлом году Американский союз защиты гражданских свобод (ACLU) обнаружил, что программное обеспечение от Amazon под названием Rekognition ошибочно идентифицировало 28 членов Конгресса как людей, которые ранее находились под арестом. Оно непропорционально и неправильно идентифицировало афроамериканцев и латиноамериканцев. Но в Amazon сказали, что в ACLU просто использовали неправильные настройки.
Судебные тяжбы также выявили недостатки программы распознавания лиц. Исследование Кардиффского университета в Южном Уэльсе показало, что действенность системы NEC NeoFace снизилась, когда на экране было много людей, и она хуже работала в пасмурные дни и вечером, когда светочувствительность камеры повышалась и кадры становились более «шумными».
За 55 часов работы система отметила 2 900 потенциальных совпадений, из которых 2 755 были ложными. Основываясь на показаниях системы, полиция произвела 18 арестов, но в докладе университета не говорится, были ли кому-либо предъявлены обвинения.
Уэльский суд выделил еще одну проблему при распознавании лиц: овцы. Так называют людей из списка подозреваемых, которые не имеют особых примет и похожи на многих других людей. Во время сканирования толпы на матчах по регби в Уэльсе система NeoFace 10 раз обнаружила женщину из списка подозреваемых полиции Южного Уэльса. Ни одна из них не была настоящей подозреваемой.
Кто владеет технологией?
Технологические фирмы по всему миру развивают программы распознавания лиц, но США, Россия, Китай, Япония, Израиль и Европа лидируют. В некоторых странах технология применяется с большей готовностью, чем в других.
В Китае миллионы камер подключены к программному обеспечению распознавания лиц, а Россия заявила о планах использовать для наблюдения собственные сети. В Европе, как и везде, программа распознавания лиц используется в магазинах для задержания воров и в бизнесе для мониторинга персонала и посетителей, но распознавание лиц в режиме реального времени в общественных местах пока на стадии судебных разбирательств.
В США полиция обычно использует систему распознавания лиц для идентификации подозреваемых по видеозаписям с камер наблюдения, а не для сканирования толп людей в режиме реального времени. Но все равно система используется все больше. Согласно отчету 2016 года Центра права Университета Джорджтаун, половина всех американцев находится в полицейских базах данных по распознаванию лиц, а значит, алгоритмы выбирают подозреваемых из 117 миллионов виртуальных профилей законопослушных граждан.
Что говорит об этом закон?
Почти ничего. В Великобритании нет закона, который дает полиции право использовать программу по распознаванию лиц, и никакой государственной политики по ее использованию. Это привело к тому, что комиссар по биометрии Пол Уайлс назвал ситуацию выгодной для полиции, которая сама решает, где и когда целесообразно использовать программу распознавания лиц и что делать с изображениями, которые снимают камеры.
Компания «Свобода» призвала к полному запрету использования программы в режиме реального времени в общественных местах, заявляя, что она нарушает право на частную жизнь и принуждает людей менять свое поведение. Группа подала судебный иск против полиции Южного Уэльса в связи с использованием этой технологии. Подобные же претензии выразил Эссекский университет в ходе независимого обзора использования полицией программы распознавания лиц. Было доказано, что людей ошибочно задерживали, а значит, технология используется для выслеживания людей, которые вовсе не находятся в розыске. В заключении было сказано, что распознавание лиц в режиме реального времени нарушает закон о правах человека.
Еще одна область разногласий – списки людей, находящихся в розыске. Несмотря на решение Верховного суда 2012 года, что хранение изображений невинных людей незаконно, полиция постоянно создавала базу данных из задержанных 20 миллионов человек, многие из которых так никогда и не были осуждены. Фотографии из базы данных и из социальных сетей используются для создания списков людей, находящихся в розыске, и используются в системах распознавания лиц. В частном бизнесе ситуация еще хуже – владельцы магазинов и предприятий сами решают, кто входит в секретные списки находящихся в розыске и обмениваются фотографиями с другими фирмами.
В США ситуация не намного лучше. Только в пяти штатах есть законы, которые касаются использования программы по распознаванию лиц правоохранительными органами. Путаница в законе привела к тому, что в то время, как в полиции Сиэтла и Сан-Франциско запрещено использовать программу в режиме реального времени, в офисе шерифа в округе Марикопа, штат Аризона, каждое фото и водительские права жителей Гондураса проверяются по списку подозреваемых через программу распознавания лиц.
Как насчет других биометрических данных?
Конечно, технология распознавания лиц в центре внимания, но полиция и другие организации внимательно изучают новые биометрические данные, которые идентифицируют людей, помимо отпечатков пальцев и ДНК.
Говорят, что анализы текстуры кожи компенсируют проблемы при попытке распознать частично закрытые или искаженные лица, анализируя расстояние между порами кожи. Этот метод не часто тестировался, но разработчики утверждают, что, возможно, он позволит различать близнецов.
Еще один биометрический анализ, который интересует полицию, так как он применим на расстоянии и без взаимодействия с человеком, – это анализ походки.
Алгоритмы идентифицируют людей по уникальному стилю их шага, отражая различия в анатомии, генетике, социальном происхождении, привычках и индивидуальности.
Алгоритмы идентифицируют людей по уникальному стилю их шага, отражая различия в анатомии, генетике, социальном происхождении, привычках и индивидуальности.
Есть еще распознавание вен, когда оптические сканеры составляют карту кровеносных сосудов на руке, пальце или в глазу. Считается, что сканеры трудно обмануть, так как наши вены находятся под кожей. Система PalmSecure Fujitsu использует карты вен для мониторинга сотрудников на различных предприятиях.
Идентификация голоса уже используется банками и Министерством по налогам и сборам для подтверждения личности. В отличие от распознавания речи, которое переводит звуки в слова, идентификация голоса обнаруживает уникальные акустические паттерны, созданные голосовым трактом человека и его речевыми привычками.
Что дальше?
Вполне возможно, что эта технология станет вездесущей. Американская фирма Vuzix объединилась с дубайской фирмой NNTC для производства смарт-очков для распознавания лиц. В оправу вставлена крошечная восьмимегапиксельная камера, которая сканирует лица прохожих и предупреждает владельца о любых совпадениях в базе данных из миллиона человек. В Великобритании беспроводное видеонаблюдение работает на полицейских нательных камерах, которые делают почти то же самое. В США недавно запатентована полицейская нательная камера, которая начинает запись, когда лицо подозреваемого опознано.
А между тем технические фирмы совершенствуют свои системы, чтобы работать быстрее, с большим количеством лиц и со все более сложными изображениями – сделанными при плохом освещении или если люди прикрывают лица. Ведется работа над алгоритмами, которые смогут идентифицировать людей в масках и с использованием маскировки. Чтобы сделать системы распознавания еще более эффективными, биометрия лица будет сочетаться с другими биометрическими анализами, такими как голос и походка.
Неудивительно, что гонка вооружений началась: исследователи из Университета Карнеги-Меллона в Питтсбурге разработали свои собственные солнцезащитные очки, чтобы обмануть систему распознавания лиц: так один испытатель в очках был идентифицирован как Мила Йовович.