зачем нужна инкапсуляция с
Инкапсулируй это
Подлинное назначение инкапсуляции — собрать в одном месте знания, относящиеся к устройству некой сущности, правилам обращения и операциям с ней. Инкапсуляция появилась гораздо раньше, чем принято думать. Модули в программах на C — это инкапсуляция. Подпрограммы на ассемблере — это инкапсуляция.
Противоположность инкапсуляции — размазывание знаний о функционировании чего-либо по всей программе.
При реализации поведения мы иногда выбираем из нескольких равноценных вариантов. В будущем вес одного из отвергнутых вариантов может возрасти под влиянием изменившихся обстоятельств, выбранный и реализованный ранее вариант станет неудачным. Изменить принятое решение будет гораздо легче, если абсолютно все детали реализации выбранного варианта сосредоточены в одном месте.
Пример: работа с денежными величинами. Не секрет, что во многих e-commerce системах денежные величины реализованы в виде чисел с плавающей запятой. Думаю, все из нас в курсе, что при простом сложении двух «целых» чисел, представленных в виде переменных с плавающих запятой, может образоваться «немного не целое число». Поэтому при такой реализации там и тут приходится вставлять вызов функции округления. Это и есть размазывание знаний об устройстве сущности по всей программе. Инкапсуляция в данном случае — собрать (спрятать) в одном месте знание о том, что деньги представлены в виде величины с плавающей запятой, и что её постоянно приходится округлять при самых невинных операциях. Спрятать так, чтобы при использовании сущности «деньги» речь об округлении даже не заходила. При инкапсуляции не будет никаких проблем заменить реализацию «денег» с числа с плавающей на число с фиксированной запятой.
Инкапсуляция в Си++ и Си
Определение
Инкапсуляция это набор инструментов для управления доступом к данным или методам которые управляют этими данными. С детальным определением термина “инкапсуляция” можно ознакомиться в моей предыдущей публикации на Хабре по этой ссылке. Эта статья сфокусирована на примерах инкапсуляции в Си++ и Си.
Инкапсуляция в Си++
По умолчанию, в классе ( class ) данные и методы приватные ( private ); они могут быть прочитаны и изменены только классом к которому принадлежат. Уровень доступа может быть изменен при помощи соответствующих ключевых слов которые предоставляет Си++.
В Си++ доступно несколько спецификаторов, и они изменяют доступ к данным следующим образом:
Для краткости, только два уровня (приватный и публичный) будут освещены в примерах.
Пример инкапсуляции
Попытка напечатать или изменить приватную переменную mobile_number из основной программы ( main ) вызовет ошибку при компиляции потому как доступ к приватным данным в классе ограничен.
Нарушение инкапсуляции с Друзьями (Хорошая практика)
В Си++ присутствует ключевое слово “друг” ( friend ) которое позволяет добавить исключения в общие правила доступа к данным. Если функция или класс названы другом ( friend ) класса Contact — они получают свободный доступ к защищенным или приватным данным.
Существует два основных правила дружбы — дружба не наследуется и не взаимна. Также, наличие “друзей” не изменяет уровень защищенности данных — приватные данные остаются приватными с исключением в виде “друга”.
Примечание: друзьями лучше не злоупотреблять. Добавление друга стоит рассматривать как исключение, не как общую практику.
Нарушение инкапсуляции с Преобразованием типов и Указателями (Плохая практика)
Прежде всего, стоит заметить что использовать указатели и преобразование типов таким способом — плохая идея. Этот способ не гарантирует получения нужных данных. Он плохо читается и плохо поддерживается. Невзирая на это, он существует.
Си++ получил в наследство от Си множество инструментов, один из которых — преобразование типов ( typecasting ). По умолчанию, все переменные и методы в классе приватные. В то же время, стандартный уровень доступа к данным в структуре ( struct ) — публичный. Возможно создать структуру или полностью публичный класс в котором данные будут расположены идентично данным в классе Contact и используя преобразование типов получить доступ к приватным данным.
Приватные данные были прочитаны и изменены благодаря преобразованию типов
Инкапсуляция в Си
Традиционно считается что инкапсуляция — один из ключевых ООП принципов. Тем не менее, это не лимитирует использование этого принципа в процедурно-ориентированных языках. В Си, инкапсуляция используется давно, невзирая на отсутствие ключевых слов “приватный” и “публичный”.
Приватные переменные
В данном примере, структура была определена в отдельном исходном файле “private_var.c”. Поскольку инициализация структуры в Си требует выделения и освобождения памяти, несколько вспомогательных функций были добавлены.
В соответствующем заголовочном файле «private_var.h», структура Contact была объявлена, но ее содержание осталось скрытым для основной программы.
Таким образом, для “main.c” содержание структуры неизвестно и попытки прочитать или изменить приватные данные вызовут ошибку при компиляции.
Получение доступа к приватным переменным с Указателями
Преобразование типов может быть использовано для преодоления инкапсуляции в Си также как и в Си++, но данный подход уже был описан. Зная, что в структуре данные расположены в порядке их декларации, указатели и арифметика указателей подойдет для достижения цели.
Доступ к переменным в структуре ограничен. Тем не менее, спрятаны только переменные, не память в которой хранятся данные. Указатели можно рассматривать как ссылку на адрес памяти, и если эта память доступна программе — данные сохраненные в этой памяти можно прочитать и изменить. Если указатель назначен на память в которой структура хранит свои данные — их можно прочитать. Используя то же определение структуры (те же “.c” и “.h” файлы) и модифицированный “main.c” файл, ограничение доступа было преодолено.
Данные в структуре были прочитаны и модифицированы
Приватные функции
Функции, будучи внешними ( extern ) по умолчанию, видимы во всей так называемой единице трансляции ( translation unit ). Другими словами, если несколько файлов скомпилированы вместе в один объектный файл, любой из этих файлов сможет получить доступ к любой функции из любого другого файла. Использование ключевого слова “статический” ( static ) при создании функции ограничит ее видимость до файла в котором она была определена.Следовательно, для обеспечения приватности функции необходимо выполнить несколько шагов:
В соответствующем заголовочном файле «private_funct.h», print_numbers() была декларирована как статическая функция.
Получение доступа к приватным функциям
Вызвать функцию print_numbers() из основной программы возможно. Для этого можно использовать ключевое слово goto или передавать в main указатель на приватную функцию. Оба способа требуют изменений либо в исходном файле “private_funct.c”, либо непосредственно в теле самой функции. Поскольку эти методы не обходят инкапсуляцию а отменяют её, они выходят за рамки этой статьи.
Заключение
Инкапсуляция существует за пределами ООП языков. Современные ООП языки делают использование инкапсуляции удобным и естественным. Существует множество способов обойти инкапсуляцию и избежание сомнительных практик поможет ее сохранить как в Си, так и в Си++.
Урок №115. Инкапсуляция, Геттеры и Сеттеры
Обновл. 13 Сен 2021 |
На предыдущем уроке мы узнали, что переменные-члены класса по умолчанию являются закрытыми. Новички, которые изучают объектно-ориентированное программирование, очень часто не понимают, почему всё обстоит именно так.
Зачем делать переменные-члены класса закрытыми?
В качестве ответа, воспользуемся аналогией. В современной жизни мы имеем доступ ко многим электронным устройствам. К телевизору есть пульт дистанционного управления, с помощью которого можно включать/выключать телевизор. Управление автомобилем позволяет в разы быстрее передвигаться между двумя точками. С помощью фотоаппарата можно делать снимки.
Все эти 3 вещи используют общий шаблон: они предоставляют вам простой интерфейс (кнопка, руль и т.д.) для выполнения определенного действия. Однако, то, как эти устройства фактически работают, скрыто от вас (как от пользователей). Для нажатия кнопки на пульте дистанционного управления вам не нужно знать, что выполняется «под капотом» пульта для взаимодействия с телевизором. Когда вы нажимаете на педаль газа в своем автомобиле, вам не нужно знать о том, как двигатель внутреннего сгорания приводит в движение колеса. Когда вы делаете снимок, вам не нужно знать, как датчики собирают свет в пиксельное изображение.
Такое разделение интерфейса и реализации чрезвычайно полезно, поскольку оно позволяет использовать объекты, без необходимости понимания их реализации. Это значительно снижает сложность использования этих устройств и значительно увеличивает их количество (устройства с которыми можно взаимодействовать).
По аналогичным причинам разделение реализации и интерфейса полезно и в программировании.
Инкапсуляция
В объектно-ориентированном программировании инкапсуляция (или «сокрытие информации») — это процесс скрытого хранения деталей реализации объекта. Пользователи обращаются к объекту через открытый интерфейс.
В языке C++ инкапсуляция реализована через спецификаторы доступа. Как правило, все переменные-члены класса являются закрытыми (скрывая детали реализации), а большинство методов являются открытыми (с открытым интерфейсом для пользователя). Хотя требование к пользователям использовать публичный интерфейс может показаться более обременительным, нежели просто открыть доступ к переменным-членам, но на самом деле это предоставляет большое количество полезных преимуществ, которые улучшают возможность повторного использования кода и его поддержку.
Преимущество №1: Инкапсулированные классы проще в использовании и уменьшают сложность ваших программ.
С полностью инкапсулированным классом вам нужно знать только то, какие методы являются доступными для использования, какие аргументы они принимают и какие значения возвращают. Не нужно знать, как класс реализован изнутри. Например, класс, содержащий список имен, может быть реализован с использованием динамического массива, строк C-style, std::array, std::vector, std::map, std::list или любой другой структуры данных. Для использования этого класса, вам не нужно знать детали его реализации. Это значительно снижает сложность ваших программ, а также уменьшает количество возможных ошибок. Это является ключевым преимуществом инкапсуляции.
Все классы Стандартной библиотеки C++ инкапсулированы. Представьте, насколько сложнее был бы процесс изучения языка C++, если бы вам нужно было знать реализацию std::string, std::vector или std::cout (и других объектов) для того, чтобы их использовать!
Преимущество №2: Инкапсулированные классы помогают защитить ваши данные и предотвращают их неправильное использование.
Глобальные переменные опасны, так как нет строгого контроля над тем, кто имеет к ним доступ и как их используют. Классы с открытыми членами имеют ту же проблему, только в меньших масштабах. Например, допустим, что нам нужно написать строковый класс. Мы могли бы начать со следующего:
ООП с примерами (часть 2)
Волею судьбы мне приходится читать спецкурс по паттернам проектирования в вузе. Спецкурс обязательный, поэтому, студенты попадают ко мне самые разные. Конечно, есть среди них и практикующие программисты. Но, к сожалению, большинство испытывают затруднения даже с пониманием основных терминов ООП.
Для этого я постарался на более-менее живых примерах объяснить базовые понятия ООП (класс, объект, интерфейс, абстракция, инкапсуляция, наследование и полиморфизм).
Первая часть посвящена классам, объектам и интерфейсам.
Вторая часть, представленная ниже, иллюстрирует инкапсуляцию, полиморфизм и наследование
Инкапсуляция
Представим на минутку, что мы оказались в конце позапрошлого века, когда Генри Форд ещё не придумал конвейер, а первые попытки создать автомобиль сталкивались с критикой властей по поводу того, что эти коптящие монстры загрязняют воздух и пугают лошадей. Представим, что для управления первым паровым автомобилем необходимо было знать, как устроен паровой котёл, постоянно подбрасывать уголь, следить за температурой, уровнем воды. При этом для поворота колёс использовать два рычага, каждый из которых поворачивает одно колесо в отдельности. Думаю, можно согласиться с тем, что вождение автомобиля того времени было весьма неудобным и трудным занятием.
Теперь вернёмся в сегодняшний день к современным чудесам автопрома с коробкой-автоматом. На самом деле, по сути, ничего не изменилось. Бензонасос всё так же поставляет бензин в двигатель, дифференциалы обеспечивают поворот колёс на различающиеся углы, коленвал превращает поступательное движение поршня во вращательное движение колёс. Прогресс в другом. Сейчас все эти действия скрыты от пользователя и позволяют ему крутить руль и нажимать на педаль газа, не задумываясь, что в это время происходит с инжектором, дроссельной заслонкой и распредвалом. Именно сокрытие внутренних процессов, происходящих в автомобиле, позволяет эффективно его использовать даже тем, кто не является профессионалом-автомехаником с двадцатилетним стажем. Это сокрытие в ООП носит название инкапсуляции.
Инкапсуляция – это свойство системы, позволяющее объединить данные и методы, работающие с ними, в классе и скрыть детали
реализации от пользователя.
Инкапсуляция неразрывно связана с понятием интерфейса класса. По сути, всё то, что не входит в интерфейс, инкапсулируется в классе.
Абстракция
Представьте, что водитель едет в автомобиле по оживлённому участку движения. Понятно, что в этот момент он не будет задумываться о химическом составе краски автомобиля, особенностях взаимодействия шестерён в коробке передач или влияния формы кузова на скорость (разве что, автомобиль стоит в глухой пробке и водителю абсолютно нечем заняться). Однако, руль, педали, указатель поворота (ну и, возможно, пепельницу) он будет использовать регулярно.
Абстрагирование – это способ выделить набор значимых характеристик объекта, исключая из рассмотрения незначимые. Соответственно, абстракция – это набор всех таких характеристик.
Если бы для моделирования поведения автомобиля приходилось учитывать химический состав краски кузова и удельную теплоёмкость лампочки подсветки номеров, мы никогда бы не узнали, что такое NFS.
Полиморфизм
Любое обучение вождению не имело бы смысла, если бы человек, научившийся водить, скажем, ВАЗ 2106 не мог потом водить ВАЗ 2110 или BMW X3. С другой стороны, трудно представить человека, который смог бы нормально управлять автомобилем, в котором педаль газа находится левее педали тормоза, а вместо руля – джойстик.
Всё дело в том, что основные элементы управления автомобиля имеют одну и ту же конструкцию и принцип действия. Водитель точно знает, что для того, чтобы повернуть налево, он должен повернуть руль, независимо от того, есть там гидроусилитель или нет.
Если человеку надо доехать с работы до дома, то он сядет за руль автомобиля и будет выполнять одни и те же действия, независимо от того, какой именно тип автомобиля он использует. По сути, можно сказать, что все автомобили имеют один и тот же интерфейс, а водитель, абстрагируясь от сущности автомобиля, работает именно с этим интерфейсом. Если водителю предстоит ехать по немецкому автобану, он, вероятно выберет быстрый автомобиль с низкой посадкой, а если предстоит возвращаться из отдалённого маральника в Горном Алтае после дождя, скорее всего, будет выбран УАЗ с армейскими мостами. Но, независимо от того, каким образом будет реализовываться движение и внутреннее функционирование машины, интерфейс останется прежним.
Полиморфизм – это свойство системы использовать объекты с одинаковым интерфейсом без информации о типе и внутренней структуре объекта.
Например, если вы читаете данные из файла, то, очевидно, в классе, реализующем файловый поток, будет присутствовать метод похожий на следующий: byte[] readBytes( int n );
Предположим теперь, что вам необходимо считывать те же данные из сокета. В классе, реализующем сокет, также будет присутствовать метод readBytes. Достаточно заменить в вашей системе объект одного класса на объект другого класса, и результат будет достигнут.
При этом логика системы может быть реализована независимо от того, будут ли данные прочитаны из файла или получены по сети. Таким образом, мы абстрагируемся от конкретной специализации получения данных и работаем на уровне интерфейса. Единственное требование при этом – чтобы каждый используемый объект имел метод readBytes.
Наследование
Представим себя, на минуту, инженерами автомобильного завода. Нашей задачей является разработка современного автомобиля. У нас уже есть предыдущая модель, которая отлично зарекомендовала себя в течение многолетнего использования. Всё бы хорошо, но времена и технологии меняются, а наш современный завод должен стремиться повышать удобство и комфорт выпускаемой продукции и соответствовать современным стандартам.
Нам необходимо выпустить целый модельный ряд автомобилей: седан, универсал и малолитражный хэтч-бэк. Очевидно, что мы не собираемся проектировать новый автомобиль с нуля, а, взяв за основу предыдущее поколение, внесём ряд конструктивных изменений. Например, добавим гидроусилитель руля и уменьшим зазоры между крыльями и крышкой капота, поставим противотуманные фонари. Кроме того, в каждой модели будет изменена форма кузова.
Очевидно, что все три модификации будут иметь большинство свойств прежней модели (старый добрый двигатель 1970 года, непробиваемая ходовая часть, зарекомендовавшая себя отличным образом на отечественных дорогах, коробку передач и т.д.). При этом каждая из моделей будет реализовать некоторую новую функциональность или конструктивную особенность. В данном случае, мы имеем дело с наследованием.
Наследование – это свойство системы, позволяющее описать новый класс на основе уже существующего с частично или полностью заимствующейся функциональностью. Класс, от которого производится наследование, называется базовым или родительским. Новый класс – потомком, наследником или производным классом.
Необходимо отметить, что производный класс полностью удовлетворяет спецификации родительского, однако может иметь дополнительную функциональность. С точки зрения интерфейсов, каждый производный класс полностью реализует интерфейс родительского класса. Обратное не верно.
Действительно, в нашем примере мы могли бы произвести с новыми автомобилями все те же действия, что и со старым: увеличить или уменьшить скорость, повернуть, включить сигнал поворота. Однако, дополнительно у нас бы появилась возможность, например, включить противотуманные фонари.
Отсутствие обратной совместимости означает, что мы не должны ожидать от старой модели корректной реакции на такие действия, как включения противотуманок (которых просто нет в данной модели).
Зачем нужна инкапсуляция?
Зачем нужна перестановка?
для чего нужна перестановка в этой программе? #include #include #include.
Зачем нужна конструкция else if
Для чего используется конструкция else if. В чем различие между просто if
Зачем нужна функция GetPrivateProfileString?
Объяснить «кусочек» кода)), из то го что есть я понял что с начало в комбобокс добавляются значения.
Зачем нужна перегрузка операторов?
Зачем нужна перегрузка «>> «, » 20
это нужно для защиты этих данных от случайного изменения сторонним кодом.
В прошлом веке программы писались с использованием глобальных переменных, к которым практически любой код имел доступ
=>
возрастала вероятность непреднамеренного изменения этих данных, что в дальнейшем вело к долгому поиску ошибок
Решение
DrOffset, жаль, у многих (а может и у большинства) афторов книг не хватает мозгов разъяснить на столь доступных примерах
Насмотрются своих ютубов, а потом друг друга по подъездам да подворотням программировать учут. Тьху, окаянныя.
«это» не противоречит твоему утверждению.
лишь обесценивает часть сообщения.
из оригинального сообщения:
нужно вырезать ненужный (и вредительский) кусок
тогда останется здравая и полезная мысль: