Что такое интенсивность фотосопротивления как учитывается это свойство при выполнении измерений
Фотосопротивления и их характеристики
Фотосопротивление, или фоторезистор – это полупроводниковый прибор, уменьшающий свое электрическое сопротивление под действием лучистого потока. Он изготавливается следующим образом. На изолирующую подложку наносится тонкий слой полупроводника, обычно методом испарения в вакууме. Затем по краям этого слоя также испарением в вакууме наносятся металлические электроды. Пластинка помещается в эбонитовую или пластмассовую оправку с окошком. Электроды соединяются с двумя выводными клеммами, с помощью которых фотосопротивление включается в цепь последовательно с источником напряжения (рисунок 73.3). Для предохранения от влияния воздуха фоточувствительная поверхность покрывается тонкой пленкой лака такого сорта, чтобы лаковая пленка обладала прозрачностью в той области спектра, которую «чувствует» данное фотосопротивление.
Другой распространенный способ создания фоточувствительного слоя состоит в том, что полупроводниковое вещество измельчается в мелкий порошок, из которого выпрессовывается тонкие таблетки, которые подвергаются спеканию. Затем на них наносят токовые электроды и помещают в пластмассовую оправку с окошком. Иногда фотосопротивления изготавливаются из монокристалла фотоактивного полупроводникового вещества.
|
1 – изолирующая подложка; 2 – п/п слой; 3 – металлические электроды.
Когда фотосопротивление, включенное в цепь с источником напряжения, затемнено, то в цепи, а следовательно, и в фотосопротивлении течет ток , определяемый электрическим сопротивлением фоторезистора и приложенной к нему разностью потенциалов. Этот ток называют темновым. При падении на поверхность фотосопротивления лучистого потока интенсивностью
ток возрастает, достигая значения
(это возрастание идет не по линейному, а по более сложному закону). Разность между световым и темновым током и дает значение фототока:
т.е. тока, который образуется из освобожденных излучением носителей заряда. Величина , измеренная при определенных условиях, является важной характеристикой фотосопротивления.
Каждое сопротивление характеризуется рядом параметров, определяющих не только его свойства, но и пределы применимости. Важнейшими характеристиками фотосопротивлений являются:
1)вольтамперная характеристика, выражающая зависимость фототока от напряжения при постоянном световом потоке
при
.
У большинства фотосопротивлений эта зависимость линейна и проходит через начало координат;
2) Световая характеристика, выражает зависимость фототока от величины светового потока при постоянном напряжении
при
— эта характеристика, как правило, нелинейная;
3) Удельная интегральная чувствительность – отношение фототока к величине светового потока при величине внешнего напряжения, приложенного к фотосопротивлению, равной 1В:
(мкА/лмВ)
4) Спектральная чувствительность – характеризует величину фототока от действия единицы лучистого потока определенной длины волны. Эта характеристика отражает тот факт, что фотосопротивление не в одинаковой мере чувствует излучение различных длин волн, рисунок 73.4 иллюстрирует это явление. На этом же рисунке показана зависимость фоточувствительности от длины волны (вообще говоря, максимум фоточувствительности приходится на край поглощения). На рисунке 73.5 показаны спектральные характеристики для различных фотосопротивлений.
Рисунок 73.4 Рисунок73.5
5) Постоянная времени – время, в течении которого фототок после прекращения освещения уменьшается в раз. Эта характеристика позволяет оценить степень инерционности фотосопротивления, т.к. после прекращения освещения избыточные носители не мгновенно, а в течении некоторого времени рекомбинируют друг с другом до тех пор, пока не установиться концентрация свободных носителей заряда, характерная для неосвещенного полупроводника (темновая концентрация ).
6) Частотная характеристика – также отражает инерционные свойства фотосопротивлений. Фотоэлектрическая инерционность приводит к тому, что когда на поверхность полупроводника падает переменный световой поток (модулированный свет ), то сила фототока зависит от частоты модуляции.
7) Пороговая чувствительность – минимальная величина светового потока, способного вызвать электрический сигнал, в 2-3 раза превышающий напряжение шума прибора.
8) Темновое сопротивление – сопротивление неосвещенного образца.
9) Номинальное напряжение – напряжение, при котором, рекомендуется использовать данное фотосопротивление.
В качестве материала для изготовления фотосопротивлений используется не любые полупроводниковые вещества, а только те из них, в которых фотопроводимость реально ощутима. К таким веществам относятся Se, Te, S, PbS, , CdS, PbTe, PbSe, CdS и др.
Фотосопротивления нашли широкое практическое применение в различных схемах измерения, автоматически и контроля.
По сравнению с вакуумными фотоэлементами с внешним фотоэффектом фотосопротивления имеют ряд преимуществ: значительно большую интегральную чувствительность, хорошие спектральные характеристики, высокую стабильность свойств, большой срок службы, малые габариты, простоту технологий изготовления. К недостаткам фотосопротивлений относятся их инерционность, отсутствие прямой пропорциональности между силой фототока и интенсивностью освещения, температурная значимость.
Дата добавления: 2015-02-10 ; просмотров: 10814 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ
Фотосопротивления
Суть внутреннего фотоэлектрического эффекта состоит в том, что в результате поглощения света в объёме вещества появляются дополнительные носители тока (электроны), благодаря чему электрическая проводимость вещества увеличивается, а сопротивление, следовательно, уменьшается. Это явление и было положено в основу изготовления фотосопротивлений. Ниже приводится описание конструкций, свойств и области применения некоторых типов фотосопротивлений, выпускаемых нашей промышленностью.
Конструкция
Фотосопротивление состоит из светочувствительного слоя полупроводника толщиной около 1 микрона, нанесённого на стеклянную пластину. На поверхность полупроводника нанесены токонесущие электроды, обычно выполняемые из золота. Конструкция и схема включения фотосопротивления изображены на рис. 1.
Размеры светочувствительной площади фотосопротивлений весьма малы, благодаря чему габаритные размеры промышленных типов фотосопротивлений незначительны. Обычно чувствительный к свету элемент монтируется в пластмассовый корпус с электродами, рассчитанными на включение в специальную панель.
Светочувствительная поверхность фотосопротивлений заливается толстым слоем прозрачного лака.
На рис. 2 изображены конструкции промышленных типов фотосопротивлений, а в табл. 1 приводятся данные о размерах их светочувствительной поверхности и омическом сопротивлении.
Вольтамперная характеристика. На рис. 3 изображена типичная для всех фотосопротивлений вольтамперная характеристика.
Мерой чувствительности фотосопротивлений является разность токов в темноте и на свету (фототок), отнесённая к величине светового потока. Как видно из рис. 3, фототок у фотосопротивлений не имеет насыщения, благодаря чему у них чувствительность пропорциональна приложенному напряжению. В связи с этим для характеристики качества фотосопротивлений введена удельная чувствительность, представляющая собой чувствительность в микроамперах на люмен, отнесенная к одному вольту приложенного напряжения.
Световая характеристика. Зависимость фототока от интенсивности освещения у фотосопротивлений имеет нелинейный характер. Максимальная крутизна, а следовательно, и чувствительность лежит в области малой освещенности, по мере же увеличения интенсивности освещения чувствительность падает.
Нелинейность световой характеристики фотосопротивлений нежелательна, и её стремятся устранить. Для суждения о величине нелинейности наиболее чувствительных фотосопротивлений на рис. 4 приведены световые характеристики ФС-К1 и ФС-К2, снятые в широком интервале освещённостей.
При необходимости величину светового потока или освещенность можно легко определить по следующей формуле:
Чувствительность. Удельная чувствительность фотосопротивлений весьма велика. Максимальную чувствительность определяет допустимое предельное рабочее напряжение, которое для различных фотосопротивлений различно.
Наиболее чувствительными в настоящее время являются фотосопротивления типа ФС-КВ, у которых чувствительность достигает 1200000 микроампер на люмен. Для сравнения можно указать, что чувствительность вакуумных фотоэлементов типа СЦВ равна всего 100 мкА/лм.
Следует подчеркнуть, что для фотосопротивлений типа ФС-А1 отнесение чувствительности к люменам является условным, поскольку их спектральная чувствительность лежит в невидимой инфракрасной области спектра.
Данные об удельной чувствительности, относительном изменении сопротивления получены при освещённости 200 люкс для ФС-А1 и ФС-Б2 и освещенности 100 люкс для ФС-К1 и ФС-К2.
Величины допустимых мощностей рассеивания для фотосопротивлений типа ФС-КО, ФС-К1 и ФС-К2 приведены в табл. 2.
Допустимая мощность рассеивания, Вт
Спектральная чувствительность. Чувствительность фотосопротивлений к различным участкам спектра различна. Как это видно из рис. 5, фотосопротивления имеют различную чувствительность в видимой области спектра. Кривая 1 для фотосопротивлений типа ФС-А1, кривая 2 = ФС-Б2, кривая 3 = ФС-К1, кривая 4 = ФС-К2. Фотосопротивления типа ФСК-M1 обладают чувствительностью не только в видимой области спектра, но и захватывают область рентгеновского излучения и даже гамма-лучей. Существуют также фотосопротивления, обладающие чувствительностью в области более длинных волн (до 6,5 микрон). При такой чувствительности фотосопротивления способны «чувствовать» инфракрасное излучение человека.
Инерционность. Все фотосопротивления отличаются относительно высокой инерционностью, которая проявляется в том, что при освещении фототок в фотосопротивлениях не сразу достигает своего конечного значения (см. рис. 6).
Фотосопротивления весьма стабильны в работе. Характер их поведения под непрерывной нагрузкой изображён на рис. 8. Их свойства остаются неизменными и при длительном хранении, а также при работе в условиях до 80% относительной влажности.
Основными областями применения фотоэлементов являются звуковое кино и фотоэлектрическая автоматика.
Применение фотосопротивлений в звуковом кино весьма ограничено. Так, для этой цели могут быть использованы только фотосопротивления типа ФС-А. Как показал опыт, снижение отдачи у них на частотах модуляции света больше 1000 Гц может быть легко скомпенсировано.
К достоинствам ФС при применении их в звуковом кино следует отнести большую чувствительность, или отдачу, и полное исключение всех помех на входе усилителя. Последнее связано с малой величиной сопротивления ФС.
Основным недостатком их является различная чувствительность по спектру, благодаря чему снижается отдача при чтении звука на цветной фонограмме. При чёрно-белой фонограмме этот недостаток отсутствует.
На рис. 9 и 10 приведены нагрузочные характеристики, полученные экспериментально при определении величины полезного сигнала в статическом режиме для фотосопротивлений типа ФС-А1 и ФС-К1. Величина полезного сигнала у ФС-К1 на сопротивлении нагрузки 1 МОм почти равна питающему напряжению. Заметим, что это имеет место при освещенности всего 110 люкс. При больших интенсивностях света кривая рис. 10 будет смещаться так, как это показано пунктиром.
На рис. 11 изображена зависимость величины полезного сигнала от освещения. По этим данным можно судить о величине могущих возникнуть нелинейных искажений из-за непропорциональности между фототоком и световым потоком.
В области фотоэлектрической автоматики применение фотосопротивлений ограничивается их инерционностью и зависимостью от температуры.
Использование фотосопротивлений в различных схемах фотореле открывает новые, дополнительные возможности для развития фотоэлектронной автоматики. Достоинствами фотосопротивлений здесь следует считать высокую чувствительность и малые размеры, позволяющие помещать их в труднодоступные для других фотоэлементов места, например под стрелку измерительного прибора. Сравнительно невысокое сопротивление допускает значительные расстояния между приёмниками света и исполнительным устройством без применения экранированных или специальных малоёмкостных кабелей.
На рис, 12 и 13 приведены схемы автоматических устройств с применением фотосопротивлений, предложенных Л. С. Генкиным.
Первый автомат предназначен для счета деталей различных размеров. Отличительной чертой его является использование одной лампы для работы двух электромагнитных реле.
Второй автомат предназначен для поддержания в бункере машины необходимого уровня материала.
С появлением фотосопротивлений ФС-К1 и ФС-К2 оказалось возможным осуществить схему фотореле для постоянного тока, состоящую всего из двух деталей: фотосопротивления и электромагнитного реле. Схема такого фотореле для переменного тока изображена на рис. 14. Отметим, что данная схема допускает параллельное включение нескольких фотосопротивлений.
Полупроводниковые фотосопротивления благодаря своей высокой чувствительности, стабильности в работе и малым размерам находят всё большее применение в промышленной автоматике и приборостроении. Так, на их основе созданы фотокопировальные станки; автоматы контроля температуры при горячем прокате металлов; блокировочные устройства в сортировочных автоматах для шарикоподшипниковой промышленности и контроль поверхности шариков; блокировка турбин на погасание факела; контроль задымлённости газов на теплоцентралях; автоматы для полиграфической промышленности.
Помимо этого, на основе фотосопротивлений создаются фотоэлектрические усилители, аппаратура для медицинских целей, читающие машины для слепых, аппаратура для контроля ряда неэлектрических величин и других автоматических устройств.
Фотосопротивления
Фотосопротивлениями называют фотоэлектрические приборы, в которых используется свойство полупроводников увеличивать проводимость под действием света.
Электроны полупроводника, связанные с атомами, под действием света переходят в свободное состояние. Для этого требуется значительно меньшая энергия работы выхода, чем для выхода электронов с поверхности металла. Поэтому внутренний фотоэффект может происходить при воздействии светового потока более длинных воли. Для фотосопротивлений используют светочувствительные полупроводники из сернистых соединений свинца, талия, висмута или кадмия.
Рис. 66. Устройство фотосопротивления и схема его включения в электрическую цепь. 1 — изолированная подложка; 2 — слой полупроводника; 3 — металлические электроды; 4 — источник света. |
В темноте через фотосопротивление течет темновой ток
(83)
При воздействии светового потока на полупроводниковый слой его сопротивление становится меньше. Поэтому световой ток фотосопротивления равен
где R с — световое сопротивление фотосопротивления.
Разность между световым и темновым токами называют фототоком:
(84)