зачем шунтируют диоды резисторами и конденсаторами
The Home Of Easy Tube Amplifier
Заметки по поводу “моста”
В данном конкретном случае замечания будут не по поводу так называемого “Русского” моста и даже не по поводу упомянутого ранее “Золотого” моста.
В ходе проектирования блоков питания для мощных транзисторных усилителей я столкнулся с интересным видом помех, генерируемых двухполупериодным мостовым выпрямителем (схема Греца). Обычно в литературе причину возникновения этих помех объясняют примерно так —
“…Наличие инерционности полупроводниковых диодов приводит к появлению кратковременного короткого замыкания первичной сети через все одновременно открытые диоды выпрямителя и наличие нулевого значения напряжения на выходе устройства на интервале времени рассасывания зарядов (tр). Резкое запирание выпрямительного диода приводит к появлению высокочастотных колебательных процессов, частота которых определяется паразитными емкостями диодов, ёмкостью монтажа, соединительных линий и их индуктивными составляющими. Временные диаграммы иллюстрируют работу выпрямителя, когда период частоты переменного напряжения сети соизмерим с интервалом времени tр, что может иметь место в высокочастотных преобразователях с синусоидальным напряжением…”
В нашем случае выпрямитель работает на емкостную нагрузку, и очевидно, что помехи связаны с несинусоидальной формой тока через диоды и с разбросом характеристик диодов в выпрямительном мосте. При этом длительность протекания тока через каждый из выпрямительных диодов меньше, чем при работе на активную нагрузку. С уменьшением уровня пульсаций выходного напряжения выпрямителя длительность открытого состояния диодов уменьшается, а амплитуда тока через них возрастает, что приводит к увеличению высокочастотных помех. (То есть – чем больше емкость первого конденсатора фильтра – тем шире ВЧ спектр помехи).
На слух такая помеха проявляется как некий легкий, но навязчивый фон с удвоенной частотой сети (100 Гц). Уровень фона не зависит от положения регулятора громкости. “Поймать” эту помеху на выходе усилителя довольно затруднительно, поскольку ее уровень черезвычайно мал, около 0.5…1mV. На выходе источника питания эта помеха практически незаметна. Но ее вполне отчетливо можно увидеть с помощью осциллографа, присоединив его щуп на выход “-” диодного моста, а “землю” на какую нибудь удаленную от блока питания шину. Расстояние между точками подсоединения осциллографа должно быть не менее 20 см, фактически измерение делается на короткозамкнутом участке цепи. Вот как “она” выглядит:
Верхний луч – пульсации выпрямленного напряжения на первом конденсаторе фильтра.
Еще несколько картинок.
После шунтирования электролитических конденсаторов фильтра питания полипропиленовыми конденсаторами –
После изменения топологии фильтра по схеме С-RC-
Как видно, после предпринятых мер помеха, с одной стороны, несколько уменьшилась, а с другой – в ее спектре появилась значительная высокочастотная составляющая.
Нужно было применить метод, ограничивающий спектр излучаемой помехи, иными словами, нужно понизить частоты паразитных колебаний. Для этого есть известный старинный “фокус” – подключить параллельно каждому из диодов моста конденсаторы емкостью в несколько тысяч пикофарад (на практике – от 4700 до 47000 пФ), что снижает резонансную частоту паразитного контура в несколько десятков – сотен раз.
Если принять во внимание индуктивные составляющие сопротивления подводящих проводов питающих цепей выпрямителя, то снижение уровня помех можно достичь включением параллельно входным выводам моста аналогичного конденсатора. Наиболее универсальным и более рациональным способом снижения уровня помех является одновременно уменьшение частоты собственных колебаний паразитного контура и уменьшение добротности паразитного контура. Это реализуется заменой шунтирующих конденсаторов на последовательные RC- цепи. Оптимальное значение сопротивления резисторов этих цепей проще всего определить экспериментально, в зависимости от мощности выпрямителя оно может быть в пределах 10…100 Ом.
Если же выпрямитель работает с напряжением частотой 50 Гц, диоды моста объединены в общий корпус и ток нагрузки точно не определен, то наиболее универсальным и простым методом подавления помех является является шунтирование диодов моста конденсаторами –
Как видно, после проведения операции по шунтированию помеха существенно уменьшилась и ее спектр стал уже. Но – каким же образом полностью избавиться от нее?
Апрель 2013 год г.Владивосток
Май 2015 г. г.Владивосток
3 thoughts on “ Заметки по поводу “моста” ”
Очень интересная статья. С уважением Вячеслав.
Зачем шунтируют диоды резисторами и конденсаторами
_________________
«Еще я хотел бы, чтобы наши ученые изобрели какой-то новый источник энергии, чтобы мы на коленях не ползали даже перед нашими братьями, умоляя их и выпрашивая тонну нефти или кубометр газа», — рассказал белорусский президент.
Зарегистрируйтесь и получите два купона по 5$ каждый:https://jlcpcb.com/cwc
AVA | |||
Зарегистрирован: Сб ноя 22, 2014 15:59:30 |
| ||
бабай | ||||
Карма: 45 |
| |||
dr.doc | ||||
Карма: 20 |
| |||
AVA | |||
Зарегистрирован: Сб ноя 22, 2014 15:59:30 | |||
VT1 | ||||
Карма: 29 | ||||
AVA | |||
Зарегистрирован: Сб ноя 22, 2014 15:59:30 |
| ||
Страница 1 из 1 | [ Сообщений: 8 ] |
Часовой пояс: UTC + 3 часа
Кто сейчас на форуме
Сейчас этот форум просматривают: rl55 и гости: 20
Зачем ДИОДЫ ШУНТИРУЮТ РЕЗИСТОРАМИ И КОНДЕНСАТОРАМИ ⇅
По формуле зависимости напряжения на конденсаторе от заряда и ёмкости. Приводится в учебнике физики для средней школы. Необходимо запитать устройство от переменного напряжения. По входящему напряжению диапазон достаточно большой. Нужна ваша помощь. Не знаю какой ёмкости должен быть C1. По какой формуле это вообще расчитывается? Так нагрузки порядка 1,5А.
Недостаточно данных. Допустимые пульсации на выходе? Частота переменного тока? На входе синус? Где мои возражения? А формула для частных условий 50Гц и синус.
Характер нагрузки нужно учитывать. Если импульсное потребление — шунтировать плёночным или керамическим конденсатором обязательно, порядка 0. А вообще, если есть возможность запитать напряжением на пару вольт выше, лучше поставить интегральный стаб.
Три ноги, легко смонтировать навесным возможность точной регулировки вых напр, отличное подавление пульсаций и приличный ток, например у LT, — помоему больше 7А. Извиняюсь перед вами. Действительно дал мало информации. Температура около 50 градусов цельсия. Моя цель сделать надежно и дешево. Буду ставить 2 электролита мкФ 63В, и 1 керамический 0,1мкФ. И появился еще один вопрос как защитить от скачков?
Ибо у преобразователя особо защит по входу нет и максимальное напряжение 50в. Всем спасибо за ответы история редактирования.
Мотоциклы Авто Сдам, сниму жилье Квартиры — спрос Недвижимость. Развитие и успех Бизнес Строительство и Ремонт Строительные услуги — предложение Строительный инструмент — предложение Стройматериалы — предложение Стройматериалы и инструменты — спрос Строительные услуги — спрос Строительство — Вакансии Стройка Частные объявления Детские товары Товары и услуги для женщин Одежда Бытовая техника Аудио-Видео Телефоны Компьютеры и комплектующие Ноутбуки и аксессуары к ним Планшеты Игровые консоли Спорттовары Велосипеды Литература Мебель Мебель — частные объявления Сельхозпродукция Рыболовно-охотничья барахолка Фототехника.
Ламповые усилители, это неплохо. Добавим здравого смысла, часть3
Продолжение статьи по материалам электронной сети Интернет с размышлениями из «Записной книжки» Юрия Игнатенко и моими комментариями и поправками
Комплектующие для выбранной схемы. Резисторы
Ставьте любые резисторы, советские или китайские, разницы нет. Главное чтобы их мощность соответствовала требуемой и немного превосходила её.
Вопрос. Хотелось бы знать про резисторы ПТМН и МЛТ? Можно их применять в УНЧ?
Ответ. Стандартные, выпускаемые серийно резисторы всех типов можно применять в УНЧ, для этого их и изготовила промышленность. Любой исправный резистор вполне хорош. Следует помнить, что резисторы одного конкретного типа не вносят искажения, заметные по сравнению с резисторами другого конкретного типа. По номиналу, как правило, не важно «плывут» они или не «плывут». Вопрос задан был о применении резисторов в УНЧ. В УНЧ применимы резисторы с типовым дрейфом. Не страшно, что уплывёт номинал от нагрева допустим 100кОм, как было при 20 град. а станет 100,1кОм при 80 град. Ну и что? Особо точные резисторы с малым тепловым коэффициентом нужны для приборов, осциллографов, космоса и т.п. с диким диапазонами изменения температуры и тысячекратным запасом. А поставив в УНЧ все резисторы ПТМН никакой слухач не отличит звучание усилителя от начинки с МЛТ. Кроме того, отличие использованного номинала на 5-10% от заданного в схеме, как правило легко переваривает любой ламповый усилитель. Более того, при настройке режима по приборам номинал может оказаться ещё дальше от оригинала на картинке. Если же оценивать шумовые характеристики резисторов разных типов, то для ламповых схем с коэффициентом усиления порядка 100 отличие будет мизерно даже для оценки по приборам.
Примечание: Это сравнимо с выносом мозга продавцу за 1 копейку при покупке Лексуса в автосалоне. Любые рассуждения про преимущества «безындуктивных» резисторов в УНЧ следует расценивать как собачий бред (или паранойя). Можно рекомендовать следующее отношение к этой теме: К вам в дом пришел вор, якобы принёсший выгодный товар. И он втирает вам в ухо вату, с единственной целью — вас ограбить. Цель простая — законно забрать вами заработанные кровные деньги в обмен на сладкие речи. Это розовая маркетинговая чепуха, за которую манагерам в малиновых пиджаках нужно жёстко бить морду. Евгений Бортник
Регулятор громкости
Для стерео усилителя нужен сдвоенный регулятор громкости, желательно с обратнологарифмической характеристикой. Следует обратить внимание на отсутствие пыли, грязи и ржавчины. Резистор до его применения должен просто нормально храниться и не скрипеть. Китайский резистор РГ 50кОм. Берите класс А, это у них обратнологарифмический. У нас класс В обратнологарифмический а у них В — линейный. Пример резистора показан на картинке.
Регулятор громкости должен быть не более 50кОм. Сейчас нет пьезо головок звукоснимателей, как раньше, источники все низкоомные поэтому на вход не нужен переменный резистор 500кОм или 1МОм. Увеличение сопротивления в 10-20раз во столько же раз уменьшает входные токи. Следовательно на мелкие входные токи фоновые наводки будут более заметны. Делая высококачественный усилитель с хорошим звучанием нельзя ставить на пути сигнала, избыточные RC-цепочки. Нельзя последовательно ставить резистор с большим сопротивлением в цепь прохождения сигнала, потому что с ёмкостью Миллера и входной ёмкостью лампы и собственно монтажа, получается та же самая RC-цепочка, которая садит всю «прозрачность звука». На пути сигнала элементарно появляются последовательно-параллельные цепочки ускоряющие и тормозящие гармоники разных частот. Поэтому нельзя применять регуляторы громкости более 50 кОм величиной.
Вопрос. Есть ли польза от установки регулятора громкости фирмы Alps?
Ответ. Особой пользы нет, потому что нет разницы. Разве что в честолюбии клиента, поскольку Alps-регулятор громкости поставить это 35$ или китайца — это 4 гривны, а СССР Б/У — бесплатно. Налицо большой, очень наглый и агрессивный базар. Это экономическая война, как обычный большой бизнес в котором крутятся большие деньги. Обывателю серут в ухо, используя его неуверенность, ввиду его слабой технической подготовленности и чувствительности к лести. Проверено достоверно.
Регуляторы тембра
Это тоже RC-цепочка, которая садит всю «прозрачность звука», поэтому никаких экранированных проводов и никаких регуляторов тембра. Записи слушайте так, как их записал режиссёр. В этом он грамотнее вас. Избавьтесь от самонадеянности, проявите культуру. Звукорежиссер (раньше это были профессионалы высокого класса) записал звук так, как надо, а не так как вам хочется. Послушаете настроенный по приборам ламповый усилитель с месяц без регуляторов тембра на линейном тракте и подумаете себе: А не больной ли я был?
Конденсаторы электролитические
На один канал в БП нужны три электролитических конденсатора не менее 100мкФ, 100мкФ и 50мкФ, запас по напряжению на 400-450 вольт определяет предел прочности. Для надежности УМЗЧ можно ограничить возраст конденсаторов в 20 лет, хотя реальное положение дел нужно глядеть по факту. Высохшие электролиты от телевизора 150+30х350 вольт лучше не применять. Импортные детали брать не обязательно. Хотя можно и на них делать. Разницы в звуке нет. Чтобы уменьшить фон, первый электролитический конденсатор по питанию, должен быть не меньше 100 мкФ, второй не меньше 100-150мкФ. Ёмкости в фильтре блока питания не надо жалеть. Однако внимательно следите за характером колебательности переходного процесса. При больших токах потребления провода выбирают потолще. Следовательно сопротивление их меньше и без нагрузки возможны фокусы. При наличии фильтрующих дросселей нужно считать переходный процесс ещё тщательнее.
Вопрос. Насколько критично если уменьшить емкости в фильтре питания? Какой уровень пульсаций на выходе допускается? И в цепи питания анода 6г2? Есть ли необходимость убирать их в подвал, или можно расположить над шасси?
Вопрос. Можно подробней об этих зеленых шляпах — танталовых электролитах?
Ответ. Танталы — лучшие электролиты СССР. Смело ставьте в катоды ламп.
Вопрос. В сети сейчас 267 вольт, днем было 240 вольт, сейчас на электролитах по 365 вольт, они на 350 рассчитаны, — это опасно?
Ответ. У исправных совдеп-конденсаторов довольно большой запас по напряжению. Выключив усилитель нужно пощупать рукой, греются электролиты или нет. Если горячие 50-80 град, то есть вероятность, что пшикнут. Если нормальной температуры — то поработают ещё. Если написано на наших конденсаторах 350 вольт, то значит до 450 вольт не взорвутся. Советские — это вам не импортные электролитические конденсаторы, на которых если написано 350 вольт, то при напряжении 360 вольт пробой неминуем. У совдеповских электролитов запас по допустимому напряжению в 1,5-2 раза. Повышенное напряжение в блоке питания усилителя будет лишь при включении. Через минуту, лампы прогреются и будет 310-320вольт.
Примечание. Следует помнить про следующее. 1.Факт повышенной вероятности взрыва при холодном включении бесспорен. 2.Факт наличия эффекта «отравления» катодов бесспорен. 3.Факт усиленного износа ламп при включении повышенных напряжений на холодный катод тоже существует вне зависимости от умников. Поэтому можно рекомендовать применение пусковой автоматики с задержкой питания по аноду. А если пуск источника выполняется при ХХ, то напряжения будут большие. Юношеская бравада с повышенными напряжениями не нужна. Используйте конденсаторы с допустимым напряжением, не меньшим напряжений, предусмотренных в схеме усилителя. Есть схемы с пусковыми гасящими резисторами. Схемотехника разнообразна. Пляска сетевого напряжения может быть более опасна для триодных схем с фиксированным смещением. Это уже характерно не для электролитов, а для лампочек, способных на саморазогрев, например 6с33с. Там есть организационные и схемотехнические способы борьбы против аварии. От автосмещения, до последательного, адаптивного и следящего смещения. Евгений Бортник
Вопрос. Почему до дросселя не рекомендуют ставить большую емкость?
Ответ. Эта рекомендация была для кенотронов. Для современных кремниевых диодов вполне допустимо и 220 мкФ ставить, однако диоды должны выдерживать большие пиковые токи (десятикратные) при включении на разряженные конденсаторы. Два первых конденсатора можно поставить по 100 мкФ, а в качестве последнего примените один из первых. Получится у соответственно 100, 100 и 50 мкФ. И электролит поставьте на массу с делителя 20-50 мкф на 25 вольт.
Примечание. Для более крутого бюджета и качественного усилителя емкость электролитов можно увеличить на порядок. Однако вначале источник питания следует смоделировать или смакетировать. В сложных источниках возникает проблема не только ограничения тока заряда, но и вопрос сбалансированной его длительности, отсутствия колебательности, приемлемой добротности, отсутствия локальных перенапряжений и резонансов, а также необходимость ускоренного разряда при выключении. Можно рекомендовать блочно-модульную конструкцию усилителя. Источник питания — главный модуль. Это монолитный встраиваемый блок, законченный функционально и предварительно полностью настроенный и отрепетированный автономно от усилителя. Евгений Бортник.
Вопрос. А вообще наращивание емкости выше определенного порога дает что-нибудь? Некоторые телезрители в фильтрах ставят емкости в тысячи микрофарад, а то и десятки тысяч.
Вопрос. Чем отличаются советские электролиты от современных импортных?
Не разъел электролит обкладки. Конденсатор — как только что с конвейера сошёл. Это делалось в СССР надёжно. А уж о деталях с ВП штампом или ОС вообще промолчу.
Вопрос. Ну а то, что все называют электролитом и предполагают, что он высыхает…. это как, не высохло? на ощупь оно влажное?
Ответ. А куда электролит может деться из герметичного конденсатора? Есть у меня электролитические конденсаторы и 1953 года. И все рабочие и ёмкость не потеряна. Разобрал конденсаторы СССР, чтоб показать их преимущество перед импортным мусором. Как видно, в содеп-электролитическом конденсаторе нет индуктивности, потому что обкладка вся, по одной из сторон, выходит наружу каждым своим витком и все витки соединяются вместе. Поэтому нет индуктивной составляющей (эффект намотки витков) и конденсатор работает в очень большом диапазоне частот, не требуя шунтирования плёночными и пр. конденсаторами.
Этот факт кроме того показывает, что с совдеп-конденсатора позволительно снимать мгновенную мощность, гораздо большую, чем с импортных. Особенность конструкции дешевых зарубежных конденсаторов показана на рисунке ниже. Видно два вывода проволочных. Они идут от одной единственной точки обкладки, следовательно доступ к остальной поверхности происходит черех погонную индуктивность. Кроме существенной индуктивности в такой конструкции характерна малая мгновенная отдача тока.
Вопрос. Как проверить электролитический конденсатор?
Ответ. Можно пробовать способы разной сепени жёсткости. Первая проверка — Неисправный электролитический конденсатор, склонный к пшиканью и взрыву, всегда греется. Нужно включить усилитель. Поработает 15минут. Надо выключить и потрогать через одну-три минуты (чтоб электролиты разрядились) все электролитические конденсаторы на нагрев, температура неисправного будет повышенной до 60 — 70 градусов. Проверка на практике бывает небезопасной. Проверил этот способ — подключил, собранный БП к сети и стал ждать. На четырнадцатой минуте взорвался один из шести конденсаторов. Вывод: температуру нужно проверять каждые 5 минут в течении 15 минут. И если температура не повышается, то дать конденсаторам потренироваться ещё часик для восстановления ёмкости. Другая проверка — диод Д226 соединяют последовательно с электролитическим конденсатором. Включают в сеть 220 В (не перепутав полярность, а то взорвётся). Форматируют часик. Потом выключают и через 1 — 2 мин измеряют мультиметром напряжение на нём. Если 0 вольт — ещё пробуют форматировать. Если не менее150вольт, то это отличный конденсатор с малыми потерями и хорошей ёмкостью. Далее можно закоротить. Если стрельнет искра — отлично энергию даёт. Ещё один способ — проверить ёмкость сравнением. Для этого используют резистор 500 Ом на 2 Вт + диод. Заряжают через эту цепочку электролит 30 сек от сети 220 вольт. Через кнопку к электролиту подключают лампочку 220 В на 60 ватт. Нажимают кнопку и оценивают, с какой яркостью вспыхнула лампочка. Далее заменяют электролит следующим и снова оценивают с какой яркостью вспыхнула лампочка.
Вопрос. Нужно ли шунтировать электролитические конденсаторы бумажными конденсаторами для лучшей работы в ВЧ диапазоне?
Ответ. Исправные электролитические конденсаторы (особенно советские) прекрасно работают до 30 кГц без завала. Поэтому их не нужно шунтировать плёнкой. Если есть Спектралаб, комплекс Шмелёва, то провести проверку можно самостоятельно. Если же есть сомнения в исправности и время дороже денег, то шунтирование хорошей плёнкой не повредит.
Конденсаторы межкаскадные
Ответ. Все заведомо исправные совдеп-конденсаторы хороши, применяйте смело. Индуктивность межкаскадных конденсаторов на качество звука практически не влияет, потому что входное сопротивление лампы следующего каскада 200 — 400 кОм. Ёмкость входная 30-200 пФ. Индуктивность конденсатора просто мизерная, влияние будет на сотнях кГц и МГцах. Посмотрите схемы ламповых осциллографов с полосой 5 — 40 МГц. Обычные каскады, обычные СССР-конденсаторы межкаскадные и полоса нормальная получается. Вся измерительная техника СССР была сделана на резисторах МЛТ, ВС на собственных конденсаторах и лампах. И всё работало, не шумели резисторы, не влияли конденсаторы и лампы правильно усиливали. Маркетинговая истерия на сайтах раздута дилерами по планам собственников зарубежных заводов. Буржуям нужно продавать свои конденсаторы и резисторы “аудиофильские”. Обычному телезрителю следует лишь соблюдать выбранные ограничения по напряжениям. Особо требовательным надо помнить, что различные конденсаторы, дают разный хвост и амплитуду гармоник. “Аудиофилы” пусть и далее мечутся, подбирая конденсаторы на свой вкус, а не на верность воспроизведения.
Евгений Бортник, август 2020, Россия, Красноярск
Primary Menu
Обычно конденсаторы параллельно диодам моста ставят для снижения помех, вызванных переключением самих диодов при малых токах нагрузки, когда диоды открываются только на самой верхушке полупериода и заряжают ёмкость фильтра короткими импульсами большого тока. В радиопередающей аппаратуре где часто применяются высоковольтные сборки из выпрямительных диодов к примеру как на рисунке. Споры о целесообразности шунтирования диодов в цепи выпрямителя для бытовой техники не утихают в среде радиолюбителей. По подобным мотивам последовательно с диодом ставят дроссель малой емкости ферритовая бусинка или трубка на выводе диода. А вот причиной импульсных напряжений на переходе могут быть как помехи из сети, так и крутые фронты напряжения, поступающего со вторичной обмотки ШИМ схем.
На самом деле вам стоило бы почитать какую-нибудь книжку по электротехнике. Если вкратце, то переменное напряжение в среднем в.
Скандальная репутация
В начале 2000-х годов алюминиевые электролитические конденсаторы терпели неудачи с гораздо более высокой скоростью, чем ожидалось, явление широко и драматично известное как конденсаторная чума. Причина была отслежена до интересной истории промышленного шпионажа, где формула электролита для конденсаторов была украдена, но затем использовалась неправильно. В результате миллионы плохих конденсаторов попали во всевозможные электронные устройства.
Эта история, несомненно, придала алюминиевым электролитам плохую репутацию ненадежных компонентов, и эта дурная слава еще больше усиливалась из-за того, что даже правильно изготовленные алюминиевые электролитические конденсаторы имеют относительно короткий срок службы по сравнению с пленочными конденсаторами (которые также могут иметь высокую ёмкость и высоковольтные характеристики, такие как у алюминиевых электролитов).
Например, семейство KXG алюминиевых электролитических конденсаторов от United Chemi-Con (которое включает в себя конденсаторы емкостью от 6,8 мкФ до 330 мкФ и напряжением от 160 В до 450 В) имеют заявленный срок службы от 8 000 до 10 000 часов, в то время как семейство EPCOS B32798 пленочных конденсаторов (которое включает в себя конденсаторы емкостью от 18 мкФ до 75 мкФ и напряжением от 250 В до 400 В) рассчитано на срок службы 60 000 часов.
Рисунок 1 – Вздутие электролитических конденсаторов, которые уже вышли из строя или близки к этому
Похоже, что репутация алюминиевых электролитов как ненадежных устройств на самом деле оправдана. Но действительно ли это так?
Оценка срока службы компонентов
Для правильной оценки продолжительности жизни компонента требуется больше, чем просто посмотреть на заявленный срок службы. Влияние воздействий (тепло, ток, напряжения), которые будет испытывать устройство во время работы, также должно быть включено в анализ. Оказывается, что номинальный срок службы обычно указывается для случаев при довольно сильном воздействии.
Если устройство будет использоваться при более низких температурах, напряжении или токе, срок службы может быть пересчитан. Этот перерасчет учитывает реальные рабочие температуру, напряжение и ток, и часто, если эти параметры ниже номинальных, пересчитанный срок службы будет во много раз длиннее номинального срока службы.
Производители конденсаторов, как правило, предоставляют расчеты и графики на основе своих исследований и полевых испытаний. Часто эти вычисления не включаются в техническое описание компонента, а вместо этого находятся в отдельном документе характеристик конденсатора (причина этого, вероятно, в том, что тогда в техническое описание пришлось бы включить слишком много дополнительной информации).
Шунтирование Диодного Моста Конденсаторами
До боли знакомое дело — только решил набросать страницу, посвящённую бестрансформаторникам, собрался с мыслями, а тут тебе на Автор: В. И что ценно, практически все виды бестрансформаторных преобразователей: и устройства с гасящими конденсаторами, и варианты ключевых бестрансформаторных схем представлены в одном месте в виде принципиальных схем с подробным описанием принципа их функционирования. Кто такой этот уважаемый «Автор: В. Новиков», что за первоисточник?
Новые книги Шпионские штучки: Новое и лучшее схем для радиолюбителей: Шпионские штучки и не только 2-е издание Arduino для изобретателей. Обучение электронике на 10 занимательных проектах Конструируем роботов.
Как устроен блок питания, часть 5
Как проверить конденсатор
Иногда неисправность электролитического конденсатора выявляется без проверки — по вздутию или разрыву верхней крышки. Она намеренно ослаблена крестообразной просечкой и работает как предохранительный клапан, разрываясь при незначительном давлении. Без этого выделяющиеся из электролита газы разрывали бы корпус конденсатора с разбрызгиванием всего содержимого. Hо нарушения могут и не проявляться внешне. Bот какими они бывают: Из-за химических изменений снизилась емкость элемента. Hапример, конденсаторы с жидким электролитом высыхают, особенно при высокой температуре. Из-за этой особенности для них существуют ограничения по температуре эксплуатации (допустимый диапазон указан на корпусе). Произошел обрыв вывода.
Тест электролитических конденсаторов.
Появилась проводимость между обкладками (пробой). Собственно, она существует и в исправном состоянии — это так называемый ток утечки. Hо при пробое эта величина из мизерной превращается в значительную. Снизилось максимально допустимое напряжение (обратимый пробой). Для каждого конденсатора существует критическое напряжение, вызывающее замыкание между обкладками. Оно указывается на корпусе.
Будет интересно➡ Конденсатор — простыми словами о сложном
B случае снижения этого параметра элемент при проверке ведет себя, как исправный, потому что тестеры подают низкое напряжение, но в схеме — как пробитый. Самый примитивный способ проверки конденсатора — на искру. Элемент заряжают, затем замыкают выводы металлическим инструментом с изолированной ручкой.
Hа руки при этом желательно одеть резиновые перчатки. Исправный элемент разряжается с образованием искры и характерного треска, нерабочий — вяло и незаметно. У данного способа два недостатка:
Даже при наличии искры невозможно понять, соответствует ли фактическая емкость радиодетали номинальной. Более информативна проверка с применением тестера. Лучше всего использовать специальный — LС-метр. Он предназначен для замера емкости, причем рассчитан на широкий диапазон. Hо многое о состоянии конденсатора расскажет и обычный мультиметр.
Наши обзоры
Что то часто меня стали спрашивать как подключить микроконтроллер или какую низковольтную схему напрямую в не используя трансформатор. Желание вполне очевидное — трансформатор, пусть даже и импульсный, весьма громоздок.
ЗАЧЕМ ШУНТИРУЮТ ДИОДЫ
Всем привет, увидел в интернете схему зарядки акб на трансформаторе от старых телевизоров ТС и вспомнил что такой у меня есть. Собрал по схеме, с трансформатора получаем Подскажите пожалуйста что можно сделать, ведь данного напряжения не хватит для зарядки АКБ. Диодный мост. С трансформатора.