зачем приводить дроби к общему знаменателю

В каких случаях возникает необходимость приведения дробей к общему знаменателю?

Пользуясь основным свойством дроби любые две обыкновенные дроби можно привести к виду, когда они имеют общий знаменатель. Дроби имеющие общий знаменатель можно складывать, вычитать и сравнивать между собой. Таким образом всякий раз, когда надо совершить одну из этих операций необходимо привести дроби к общему знаменателю.

Каковы правила арифметических операция для рациональных чисел в форме дробей?

Правила арифметических операций для рациональных чисел, представленных в форме обыкновенных дробей следующие:

1 – чтобы сложить две дроби надо привести их к общему знаменателю и после этого составить дробь у которой числитель сумма числителей, а

2 – чтобы вычесть одну дробь из другой надо привести их к общему знаменателю и после этого составить дробь у которой числитель разность

числителей, а знаменатель –общий : зачем приводить дроби к общему знаменателю. image035. зачем приводить дроби к общему знаменателю фото. зачем приводить дроби к общему знаменателю-image035. картинка зачем приводить дроби к общему знаменателю. картинка image035.

3 – чтобы умножить одну дробь на другую надо составить дробь у которой числитель произведение числителей, а знаменатель – произведение

Знаменателей: зачем приводить дроби к общему знаменателю. image036. зачем приводить дроби к общему знаменателю фото. зачем приводить дроби к общему знаменателю-image036. картинка зачем приводить дроби к общему знаменателю. картинка image036.

4 – чтобы разделить одну дробь на другую надо составить дробь у которой числитель произведение числителя делимой дроби на знаменатель

дроби делителя, а знаменатель – произведение знаменателя делимой дроби на числитель дроби-делителя:

зачем приводить дроби к общему знаменателю. image037. зачем приводить дроби к общему знаменателю фото. зачем приводить дроби к общему знаменателю-image037. картинка зачем приводить дроби к общему знаменателю. картинка image037.

Как умножить дробь на целое число? Как разделить дробь целое на число?

Чтобы умножить дробь на число надо умножить на это число числитель, а знаменатель оставить без изменения.

Чтобы разделить дробь на целое число надо умножить на это число знаменатель, а числитель оставить без изменения.

Как сравнить два рациональных числа в виде дробей?

Надо привести дроби к общему знаменателю и сравнить числители.

Какой порядок на рациональных числах считается естественным?

Порядок на рациональных числах полученный путем продолжения естественного порядка целых чисел и при котором сравнение рациональных чисел происходит по правилу 55 считается естественным порядком на рациональных числах.

При переходе от натуральных чисел к целым основные свойства неравенств получили определенные изменения (дополнения). Изменились ли основные свойства неравенств при переходе от целых чисел к рациональным?

При переходе от натуральных чисел к целым добавились отрицательные числа, для которых, в отличии от натуральных, чем больше модуль числа, тем меньше само число. Именно это обстоятельство и привело к дополнениям в основных свойствах неравенств. При переходе от целых к рациональным, новых объектов с подобными свойствами введено не было. Поэтому основные свойства неравенств на рациональных числах точно такие же как они сформулированы для целых чисел.

Источник

Общий знаменатель, понятие и определение.

Так для чего нужен общий знаменатель, или когда нужен общий знаменатель?
Ответ довольно прост, мы имеем право дроби складывать и вычитать только когда у данных дробей есть общий знаменатель. Поэтому важно понять, как находить общий знаменатель.

Определение:
Общий знаменатель – это число всегда положительное на которое делятся знаменатели данных дробей.

Формула основного свойства рациональных чисел.

Такое решение называется приведением к общему знаменателю. Мы имеем право умножать одновременно на одно и тоже число и числитель и знаменатель.

Наименьший общий знаменатель.

Что такое наименьший общий знаменатель?

Определение:
Наименьший общий знаменатель – это наименьшее положительное число кратное знаменателям данных дробей.

Как привести к наименьшему общему знаменателю? Чтобы ответить на этот вопрос рассмотрим пример:

Решение:
Чтобы найти наименьший общий знаменатель нужно найти наименьшее общее кратное (НОК) знаменателей этих дробей.

У первой дроби знаменатель равен 20 разложим его на простые множители.
20=2⋅5⋅2

Так же разложим и второй знаменатель дроби 14 на простые множители.
14=7⋅2

Ответ: наименьший общий знаменатель будет равен 140.

Как привести дробь к общему знаменателю?

Нужно первую дробь \(\frac<1><20>\) домножить на 7, чтобы получить знаменатель 140.

Правила или алгоритм приведения дробей к общему знаменателю.

Алгоритм приведения дробей к наименьшему общему знаменателю:

Общий знаменатель для нескольких дробей.

Как найти общий знаменатель для нескольких дробей?

Рассмотрим пример:
Найдите наименьший общий знаменатель для дробей \(\frac<2><11>, \frac<1><15>, \frac<3><22>\)

Решение:
Разложим знаменатели 11, 15 и 22 на простые множители.

Число 11 оно само по себе уже простое число, поэтому его расписывать не нужно.
Разложим число 15=5⋅3
Разложим число 22=11⋅2

Найдем наименьшее общее кратное (НОК) знаменателей 11, 15, и 22.
НОК(11, 15, 22)=11⋅2⋅5⋅3=330

Мы нашли наименьший общий знаменатель для данных дробей. Теперь приведем данные дроби \(\frac<2><11>, \frac<1><15>, \frac<3><22>\) к общему знаменатели равному 330.

Вопросы по теме:
Какой общий знаменатель у дробей \(\bf \frac<2><25>\) и \(\bf \frac<1><14>\)?
Ответ:
Какой наименьший общий знаменатель у дробей 14 и 25? Воспользуемся алгоритмом приведения дробей к общему знаменателю алгебраических дробей.

Сначала разложим на простые множители знаменатели 14 и 25.
14=2⋅7
25=5⋅5
Теперь найдем НОК(14,25)=2⋅7⋅5⋅5=350.

Это мы нашли наименьший общий знаменатель:

Но не всегда нужно находит наименьший общий знаменатель иногда, можно найти любой знаменатель, а потом можно конечную дробь сократить. Например, для дробей \(\frac<2><25>\) и \(\frac<1><14>\) знаменателем может быть число 700, 1400 и т.д.

Источник

Приведение дробей к общему знаменателю

Изначально я хотел включить методы приведения к общему знаменателю в параграф «Сложение и вычитание дробей». Но информации оказалось так много, а важность ее столь велика (ведь общие знаменатели бывают не только у числовых дробей), что лучше изучить этот вопрос отдельно.

Итак, пусть у нас есть две дроби с разными знаменателями. А мы хотим сделать так, чтобы знаменатели стали одинаковыми. На помощь приходит основное свойство дроби, которое, напомню, звучит следующим образом:

Дробь не изменится, если ее числитель и знаменатель умножить на одно и то же число, отличное от нуля.

Для чего вообще надо приводить дроби к общему знаменателю? Вот лишь несколько причин:

Есть много способов найти числа, при умножении на которые знаменатели дробей станут равными. Мы рассмотрим лишь три из них — в порядке возрастания сложности и, в некотором смысле, эффективности.

Умножение «крест-накрест»

Самый простой и надежный способ, который гарантированно выравнивает знаменатели. Будем действовать «напролом»: умножаем первую дробь на знаменатель второй дроби, а вторую — на знаменатель первой. В результате знаменатели обеих дробей станут равными произведению исходных знаменателей. Взгляните:

Задача. Найдите значения выражений:

зачем приводить дроби к общему знаменателю. formula1. зачем приводить дроби к общему знаменателю фото. зачем приводить дроби к общему знаменателю-formula1. картинка зачем приводить дроби к общему знаменателю. картинка formula1.

В качестве дополнительных множителей рассмотрим знаменатели соседних дробей. Получим:

зачем приводить дроби к общему знаменателю. formula2. зачем приводить дроби к общему знаменателю фото. зачем приводить дроби к общему знаменателю-formula2. картинка зачем приводить дроби к общему знаменателю. картинка formula2.

Да, вот так все просто. Если вы только начинаете изучать дроби, лучше работайте именно этим методом — так вы застрахуете себя от множества ошибок и гарантированно получите результат.

Единственный недостаток данного метода — приходится много считать, ведь знаменатели умножаются «напролом», и в результате могут получиться очень большие числа. Такова расплата за надежность.

Метод общих делителей

Этот прием помогает намного сократить вычисления, но, к сожалению, применяется он достаточно редко. Метод заключается в следующем:

Задача. Найдите значения выражений:

зачем приводить дроби к общему знаменателю. formula4. зачем приводить дроби к общему знаменателю фото. зачем приводить дроби к общему знаменателю-formula4. картинка зачем приводить дроби к общему знаменателю. картинка formula4.

зачем приводить дроби к общему знаменателю. formula5. зачем приводить дроби к общему знаменателю фото. зачем приводить дроби к общему знаменателю-formula5. картинка зачем приводить дроби к общему знаменателю. картинка formula5.

Заметим, что вторая дробь вообще нигде ни на что не умножалась. Фактически, мы сократили объем вычислений в два раза!

Кстати, дроби в этом примере я взял не случайно. Если интересно, попробуйте сосчитать их методом «крест-накрест». После сокращения ответы получатся такими же, но работы будет намного больше.

В этом и состоит сила метода общих делителей, но, повторюсь, применять его можно лишь в том случае, когда один из знаменателей делится на другой без остатка. Что бывает достаточно редко.

Метод наименьшего общего кратного

Когда мы приводим дроби к общему знаменателю, мы по сути пытаемся найти такое число, которое делится на каждый из знаменателей. Затем приводим к этому числу знаменатели обеих дробей.

Таких чисел очень много, и наименьшее из них совсем не обязательно будет равняться прямому произведению знаменателей исходных дробей, как это предполагается в методе «крест-накрест».

Наименьшее число, которое делится на каждый из знаменателей, называется их (НОК).

Если вам удастся найти такое число, итоговый объем вычислений будет минимальным. Посмотрите на примеры:

Задача. Найдите значения выражений:

зачем приводить дроби к общему знаменателю. formula7. зачем приводить дроби к общему знаменателю фото. зачем приводить дроби к общему знаменателю-formula7. картинка зачем приводить дроби к общему знаменателю. картинка formula7.

Теперь приведем дроби к общим знаменателям:

зачем приводить дроби к общему знаменателю. formula8. зачем приводить дроби к общему знаменателю фото. зачем приводить дроби к общему знаменателю-formula8. картинка зачем приводить дроби к общему знаменателю. картинка formula8.

Обратите внимание, насколько полезным оказалось разложение исходных знаменателей на множители:

Чтобы оценить, насколько колоссальный выигрыш дает метод наименьшего общего кратного, попробуйте вычислить эти же примеры методом «крест-накрест». Разумеется, без калькулятора. Думаю, после этого комментарии будут излишними.

Не думайте, что таких сложных дробей в настоящих примерах не будет. Они встречаются постоянно, и приведенные выше задачи — не предел!

Единственная проблема — как найти этот самый НОК. Иногда все находится за несколько секунд, буквально «на глаз», но в целом это сложная вычислительная задача, требующая отдельного рассмотрения. Здесь мы не будем этого касаться.

Источник

Приведение дроби к наименьшему общему знаменателю: правило, примеры решений

В данной статье рассказывается, как привести дроби к общему знаменателю и как найти наименьший общий знаменатель. Приведены определения, дано правило приведения дробей к общему знаменателю и рассмотрены практические примеры.

Что такое приведение дроби к общему знаменателю?

Если же дроби имеют разные знаменатели, то их всегда можно привести к общему знаменателю при помощи нехитрых действий. Чтобы сделать это, нужно числитель и знаменатель умножить на определенные дополнительные множители.

Приведение дробей к общему знаменателю

Общий знаменатель: определение, примеры

Что такое общий знаменатель?

Другими словами, общим знаменателем какого-то набора дробей будет такое натуральное число, которое без остатка делится на все знаменатели этих дробей.

Ряд натуральных чисел бесконечен, и поэтому, согласно определению, каждый набор обыкновенных дробей имеет бесконечное множество общих знаменателей. Иначе говоря, существует бесконечно много общих кратных для всех знаменателей исходного набора дробей.

Пример 1. Общий знаменатель

Значит, 150 не является общим знаменателем указанных дробей.

Наименьший общий знаменатель

Наименьшее натуральное число из множества общих знаменателей какого-то набора дробей называется наименьшим общим знаменателем.

Наименьший общий знаменатель

Как найти наименьший общий знаменатель? Его нахождение сводится к нахождению наименьшего общего кратного дробей. Обратимся к примеру:

Пример 2. Найти наименьший общий знаменатель

Как привести дроби к наименьшему общему знаменателю

Существует правило, которое объясняет, как привести дроби к общему знаменателю. Правило состоит из трех пунктов.

Правило приведения дробей к общему знаменателю

Рассмотрим применение этого правила на конкретном примере.

Пример 3. Приведение дробей к общему знаменателю

По правилу, сначала найдем НОК знаменателей дробей.

Умножаем числитель и знаменатель дробей на дополнительные множители и получаем:

Приведение нескольких дробей к наименьшему общему знаменателю

По рассмотренному правилу к общему знаменателю можно приводить не только пары дробей, но и большее их количество.

Приведем еще один пример.

Пример 4. Приведение дробей к общему знаменателю

Вычислим НОК знаменателей. Находим НОК трех и большего количества чисел:

Далее вычислим дополнительные множители для каждой дроби.

Умножаем дроби на дополнительные множители и переходим к наименьшему общему знаменателю:

3 2 · 36 = 108 72 5 6 · 12 = 60 72 3 8 · 9 = 27 72 17 18 · 4 = 68 72

Источник

Приведение дробей к общему знаменателю.

Общий знаменатель и дополнительный множитель.

У дробей бывают различные или одинаковые знаменатели. Одинаковый знаменатель или по-другому называют общий знаменатель у дроби. Пример общего знаменателя:

Пример разных знаменателей у дробей:

Как привести к общему знаменателю дроби?

У первой дроби знаменатель равен 3, у второй равен 13. Нужно найти такое число, чтобы делилось и на 3 и на 13. Это число 39.

Первую дробь нужно умножить на дополнительный множитель 13. Чтобы дробь не изменилась умножаем обязательно и числитель на 13 и знаменатель.

Вторую дробь умножаем на дополнительный множитель 3.

Мы привели к общему знаменателю дроби:

Наименьший общий знаменатель.

Рассмотрим еще пример:

Приведем дроби \(\frac<5><8>\) и \(\frac<7><12>\) к общему знаменателю.

Общий знаменатель для чисел 8 и 12 могут быть числа 24, 48, 96, 120, …, принято выбирать наименьший общий знаменатель в нашем случае это число 24.

Наименьший общий знаменатель – это наименьшее число, на которое делиться знаменатель первой и второй дроби.

Как найти наименьший общий знаменатель?
Методом перебора чисел, на которое делиться знаменатель первой и второй дроби и выбрать из них самое наименьшее.

Нам нужно дробь со знаменателем 8 умножить на 3, а дробь со знаменателем 12 умножить на 2.

Если у вас сразу не получиться привести дроби к наименьшему общему знаменателю в этом ничего страшного нет, в дальнейшем решая пример вам может быть придется полученный ответ сократить.

Общей знаменатель можно найти для любых двух дробей это может быть произведение знаменателей этих дробей.

Например:
Приведите дроби \(\frac<1><4>\) и \(\frac<9><16>\) к наименьшему общему знаменателю.

Самый простой способ найти общий знаменатель – это произведение знаменателей 4⋅16=64. Число 64 это не наименьший общий знаменатель. По заданию нужно найти именно наименьший общий знаменатель. Поэтому ищем дальше. Нам нужно число, которое делиться и на 4, и на 16, это число 16. Приведем к общему знаменателю дроби, умножим дробь со знаменателем 4 на 4, а дробь со знаменателем 16 на единицу. Получим:

Вопросы по теме:
Любые ли две дроби можно привести к одному общему знаменателю?
Ответ: да.

К какому знаменателю принято приводить дроби?
Ответ: к наименьшему общему знаменателю.

Пример №1:
Для дроби \(\frac<1><2>\) запишите равную дробь со знаменателем: а) 12 б) 18 в) 50?

Решение:
а) Число 2 нужно умножить на 6, чтобы получить 12. Следовательно, мы всю дробь умножаем на дополнительный множитель 6.

б) Число 2 нужно умножить на 9, чтобы получить 18. Следовательно, мы всю дробь умножаем на дополнительный множитель 9.

в) Число 2 нужно умножить на 25, чтобы получить 50. Следовательно мы всю дробь умножаем на дополнительный множитель 25.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *