зачем объективы у проекционных аппаратов и фотоаппаратов должны быть подвижными
—>Геометрическая оптика
Урок 10. Оптические приборы. Фотоаппарат.
Оптические приборы, представляющие собой совокупность нескольких призм или линз, нескольких зеркал или одновременно линз, призм и зеркал, предназначены для преобразования световых пучков. С их помощью могут изменяться направления хода световых лучей, или телесные углы, в пределах которых распространяются световые пучки. Последнее обстоятельство связано с получением изображений, размеры которых отличаются от размеров предметов.
Первое, на что нужно обращать внимание при анализе действия оптической системы, — это назначение и реальные условия ее работы. Где может располагаться предмет перед системой? Какое изображение (увеличенное, уменьшенное, обратное или прямое) должна давать система? С помощью чего регистрируется полученное изображение (на экране, фотопленке, рассматривается невооруженным глазом или глазом через какую-нибудь линзовую систему)?
Все оптические приборы можно разделить на две группы:
Фотоаппаратом называется оптико-механический прибор, предназначенный для получения на фотопленке или фотопластинке изображения фотографируемого предмета.
Фотография была изобретена в 30–х годах XIX века и прошла долгий путь развития. Современная фотография, ставшая малоформатной, моментальной, цветной, стереоскопической, нашла широчайшее применение во всех областях нашей жизни. Велика её роль в исследовании природы. Фотография позволяет рассматривать различные объекты (от микроскопических до космических), невидимые излучения и т.д. Всем известное значение художественной фотографии, детищем которой является кино.
Основными частями фотоаппарата являются непрозрачная камера и система линз, называемая объективом. Простейший объектив представляет собой одну собирающую линзу. Объектив создаёт вблизи задней стенки камеры действительное перевёрнутое изображение фотографируемого предмета. В большинстве случаев предмет находится на расстоянии, большем двойного фокусного, поэтому изображение получается уменьшенным. В том месте, где получается изображение, помещается фотоплёнка или фотопластинка, покрытая слоем светочувствительного вещества – фотоэмульсией.
Фотографируемые предметы могут находиться на разных расстояниях от аппарата, следовательно, расстояние между объективом и плёнкой также необходимо изменять, что осуществляется обычно перемещением объектива.
Световая энергия, попадающая на светочувствительный слой, дозируется фотографическим затвором, который даёт доступ свету лишь на определённое время – время экспозиции. Время экспозиции зависит от чувствительности фотоэмульсии и от освещённости плёнки, которая зависит, в частности, от диаметра объектива. Диаметр действующей части объектива можно менять с помощью диафрагмы и этим регулировать освещённость фотоплёнки. Уменьшая отверстие диафрагмы, можно добиться того, что изображение предметов, находящихся на различных расстояниях от аппарата, будут достаточно чёткими. Возрастёт, как говорят, глубина резкости.
После проявления пленки при печатании фотографий пользуются фотоувеличителем, который увеличивает изображение негатива на фотобумаге.
Проекционные аппараты — это хорошо известные фильмоскопы, эпипроекторы, диапроекторы, эпидиаскопы, киноаппараты, кодаскопы и др.
Аппараты, в которых устройство обыкновенного проекционного аппарата (диаскопа) и эпископа совмещено, называют эпидиаскопами (рис. 1, в).
Лупой называют короткофокусную собирающую линзу или систему линз, действующих как одна собирающая линза (обычно фокусное расстояние лупы не превышает 10 см).
Ход лучей в лупе показан на рисунке. Лупу помещают близко к глазу, а рассматриваемый предмет АВ=А 1 В 1 располагают между лупой и ее передним фокусом, чуть ближе последнего. Подбирают положение лупы между глазом и предметом так, чтобы видеть резкое изображение предмета. Это изображение А 2 В 2 получается мнимым, прямым, увеличенным и находится на расстоянии наилучшего зрения OB 2 = d 0 от глаза, а сам глаз находится непосредственно перед лупой.
Из рисунке видно также, что линейное увеличение лупы:
Так как OB 2 = d 0, а OB 1 ≈ F ( F — фокусное расстояние лупы), то где d 0 = 25 см. Следовательно, увеличение, даваемое лупой, равно отношению расстояния наилучшего зрения к фокусному расстоянию лупы.
Микроскоп. Для получения больших угловых увеличений (от 20 до 2000) используют оптические микроскопы. Увеличенное изображение мелких предметов в микроскопе получают с помощью оптической системы, которая состоит из объектива и окуляра.
Статья про объективы, фотографию
Проекционные объективы и простой способ их крепления к камере
Однако имеется целый класс технической оптики, которая отвечает требованиям портретистов. С частью её мы познакомились в одной из предыдущих статей. Это, конечно же, проекционная оптика.
Типы проекционных объективов
Проекционые объективы тоже бывают разные по назначению, по своей системе, оптической схеме и пр.
По формату кадра их можно разделить на:
1. Широкоформатные, для 70 мм кинопленки. Это крупные, тяжелые монстры, содержащие десяток линз. В свою очередь они делятся на «компактные» и «длинные»
2. Проекционные объективы под 35 мм кинопленку. Это семейство разношерстное, есть смысл поделить его по оптическим схемам.
4. Объективы от эпидиаскопов. Это самые крупные представители семейства. Имеют большое поле покрытия, светосилу 3.5-4.5 и фокусное от 200 мм. Разрешение для обычной малоформатной матрицы явно недостаточное. Можно использовать разве что как подзорную трубу. Имеют схемы Тессар, Триплет, Диалитар. Примеры: Триплет 365/3.65, Индустар-51 в проекционном варианте, МОМ 497мм (венгерский 5кг монстр, из него выходит приличный телескоп).
Можно сделать вывод, что наиболее удачными вариантами для переделки являются объективы для 35мм кинопленки. О них и поведем речь.
Переделка объектива на примере КО-120М
*Более «продвинутый» вариант адаптации проекционников типа КО представлен здесь: http://lens-club.ru/link?go=http://lens-club.ru/articles/item/c_206.html
Этот способ может подойти для крупного проекционного объектива весом до 1.5 кг. Способ очень прост, делаем упор именно на простоту и воспроизводимость. Те, кто могут просто выточить геликоид или раздолбать 500/8 ЗЛО могут не смотреть).
Требования к объективу:
1. Вынос фокуса не менее 49 мм (большинство проекционников имеют вынос порядка этого значения и более)
Что нужно для переделки:
1. Объектив
2. Ножовка по металлу и два ножовочных полотна
3. Ножницы и бумага
6. Маааленький надфиль
8. Смазочноые материалы
Теперь поэтапно распишем действия.
1. Примерно посередине (можно чуть выше середины) намечаем виток (правый винт) на 360 градусов с шагом 15-20мм.
2. По разметке аккуратно пропиливаем (не насквозь. ) двумя полотнами (толщина такой канавки будет около 1-1.5мм) канавку на стенке блока линз.
6. После достижения нужного результата закладываем небольшое количество смазки и ищем бесконечность.
8. Крепим шток. Кто на что горазд, ну а я просто фиксировал его вязким эпоксидным клеем, а потом убирал лищнее напильником.
Полученную конструкцию красим и защищаем краску от сколов.
Получаем примерно такое что-то:
Вид переделанного КО-120М рядом с непеределанным КО-120. Видно мое кривоватое ламинирование и «пипка» штока.
Такой способ переделки подходит для планароподобных и апланатоподобных проекционников. Для большинства триплетов есть более удобный способ. Разберем его на примере Триплет 78/2.8.
Переделка Триплет 78/2.8
В этом случае результат получается более цивилизвованный, есть даже диафрагма.
Какие требования к объективу:
1. Объектив должен иметь ни слишком большую заднюю линзу
3. Задняя часть должна быть узкая (ничего лишнего, кроме оправы линзы) для объективов с фокусным 75-90 мм.
2. Оправа светофильтра 52мм
3. Гелиос-44М или М-х без линз*.
*Прошу всех самодельщиков не гробить нормальные гелиосы на такие самоделки! Ищите «инвалидов». Спасибо за понимание.
Итак, начнем по пунктам.
1. Освобождаем заднюю часть триплета от лишних деталей, оставляем только оправу задней линзы и линзоблока.
3. Примеряем триплет к корпусу гелиоса и ловим камерой бесконечность, запоминая необходимый вынос триплета из корпуса гелиоса.
4. Воспользуемся оправой фильтра на 52 мм, чтобы убрать перебег за бесконечность. Для более длиннофокусных надо несколько оправ или просто более крупное промежуточное кольцо.
5. Крепим корпус триплета в кольце. Я использовал цианакрилат, т.к. хочу сохранить конструкцию в некоторой степени разборной и не хочу вовсе ничего портить сверлением и прочим. Эпоксидка скрепит все намертво, если что.
Вид в целом и со стороны хвоста
Так, мы получили цивильный портретник с диафрагмой и нормальным геликоидом про очень простой переделке. Такой способ подходит практически для любых объективов с большим задним фокальным расстоянием и для объективов с небольшой задней линзой.
В этой статье мы рассмотрели следующие вещи:
-какие из них можно установить на зеркальную камеру (и какие стоит устанавливать);
-не всегда для переделки объектива необходимо изготавливать фокусер из металла, и не всегда необходим, как по совету nukemall, готовый геликодио 500/8 зеркально-линзового объектива. Конечно, в чем-то импровизированный фокусер уступает заводскому, но то зависит от того, как его изготовишь.
На этом мы закончим нашу статью, надеюсь, что материал в ней был для читателя полезен. Благодарю за прочтение!
17650
7
Проекционный аппарат. Фотоаппарат
Диаскоп
Часто при чтении лекций или проведении научных семинаров возникает необходимость показать на экране большому числу слушателей какое-либо изображение, сделанное на прозрачной пленке – диапозитиве. Для этой цели используется специальный прибор – диаскоп. В него вставляют диапозитив, и на экране появляется его сильно увеличенное изображение.
Возникает вопрос: как же «работает» диаскоп?
|
Главный секрет диаскопа – это собирающая линза. В самом деле, если на очень малом расстоянии от главного переднего фокуса собирающей линзы поместить небольшой предмет, то собирающая линза даст сильно увеличенное изображение этого предмета (рис. 9.1).
Изображение это действительное и перевернутое. Если в том месте, где получилось изображение, поставить непрозрачный экран (желательно белый), то мы увидим на нем четкое изображение предмета.
Читатель: Но нам же не нужно перевернутое изображение! Нам нужно нормальное изображение.
Автор: Эту проблему легко решить. Достаточно вставить диапозитив в диаскоп «вверх ногами». Тогда изображение как раз получится нормальным. А для того чтобы изображение всегда получалось четким, диапозитив можно перемещать вдоль главной оптической оси линзы, подбирая расстояние между линзой и диапозитивом так, чтобы изображение получалось точно в том месте, где находится экран. Это называется наводкой на резкость.
Теперь, когда основная идея устройства нами понята, рассмотрим схему реального диаскопа (рис. 9.2).
Диапозитив 1 помещается перед фокальной плоскостью собирающей линзы 5, которая называется объективом. Источник света 2 освещает диапозитив с помощью системы линз, которая называется конденсором 3. Конденсор нужен для того, чтобы вся поверхность диапозитива 1 была освещена равномерно. За источником света расположено вогнутое зеркало 4, которое возвращает обратно свет, падающий от источника на заднюю стенку диаскопа. Изображение получается на экране 6.
|
Задача 9.1. Какое увеличение k диапозитива дает объектив проекционного фонаря с фокусным расстоянием F = 0,25 м, если экран удален от объектива на расстояние f = 4,0 м?
Увеличение диапозитива – это линейное увеличение в собирающей линзе:
. (2)
Выразим d из (2): и подставим в (1), получим:
Ответ:
СТОП! Решите самостоятельно: А1, А2, В1, В2.
Фотоаппарат
Я думаю, нет нужды объяснять, что такое фотоаппарат. Но интересно было бы разобраться, как он устроен.
В фотоаппарате есть два основных секрета. Первый секрет – это светочувствительная фотопленка. Если на этой пленке на очень короткое время (доли секунды) удается получить четкое изображение фотографируемого предмета, то это изображение остается на ней навсегда. Дело здесь в химическом (весьма сложном) действии света на фотопленку. В детали химических процессов мы, понятное дело, сейчас вникать не будем.
|
Второй секрет – это объектив. В простейшем случае объективом фотоаппарата служит обычная собирающая линза. С ее помощью и удается получать на фотопленке нужные изображения. Принцип действия фотоаппарата показан на рис. 9.3.
Предмет АВ, который мы хотим сфотографировать, обычно находится достаточно далеко от объектива, то есть на расстоянии, значительно превышающем фокусное расстояние объектива. В этом случае изображение получается действительным, перевернутым и сильно уменьшенным. И находится это изображение за задней фокальной плоскостью объектива на очень малом расстоянии от нее. Значит, если в том месте, где находится изображение А¢В¢, поместить фотопленку, то на ней получится четкое изображение предмета АВ.
|
Теперь рассмотрим схему простейшего фотоаппарата (рис. 9.4). Фотоаппарат состоит из объектива 1 и ящика 2 со светонепроницаемыми стенками. Этот ящик называется камерой. Объектив помещается в передней стенке камеры, а у задней стенки помещают светочувствительную фотопластинку 3. Для получения четкого изображения объектив можно перемещать относительно задней стенки камеры (наводка на резкость).
Промежуток времени, необходимый для освещения фотопластинки (экспозиция) зависит от чувствительности пластинки к свету и от условий освещенности фотографируемого предмета. При фотографировании в яркий солнечный день экспозиция в современных фотоаппаратах составляет сотые и даже тысячные доли секунды. Но если вы захотите тем же фотоаппаратом сфотографировать ночное небо, потребуется экспозиция минут тридцать.
|
Современные фотоаппараты принципиально устроены точно так же, разница лишь в деталях: например, вместо фотопластинки обычно используется фотопленка, да и размеры у современных фотоаппаратов как правило небольшие (рис. 9.5).
СТОП! Решите самостоятельно: А3, А4, В3, В4.
Задача 9.2. При съемке автомобиля длины l = 4,0 м пленка располагалась от объектива на расстоянии f = 6,0 см. С какого расстояния d снимали автомобиль, если длина его негативного изображения l = 32 мм?
СТОП! Решите самостоятельно: А5, В4.
Задача 9.3. Определить оптическую силу объектива фотоаппарата, которым фотографируют местность с самолета на высоте 5 км в масштабе 1 : 20 000. В каком масштабе получится снимок, если этим фотоаппаратом сделать съемку поверхности Земли с искусственного спутника, находящегося на высоте 250 км? (Все значения считать точными.)
То есть масштаб и линейное увеличение – это одна и та же величина. В данном случае высота h – это расстояние от предмета до линзы. Пусть f – расстояние от линзы до изображения (от объектива до фотопленки), а F – фокусное расстояние объектива линзы. Тогда по формуле линзы получим
. (1)
Теперь учтем, что в условии задачи h >> f, поэтому и слагаемым
в формуле (1) можно пренебречь. Тогда
f = F, т.е. изображение получается в фокальной плоскости линзы.
Линейное увеличение k, как известно, равно . А поскольку линейное увеличение в данном случае равно масштабу, получим формулу
. (9.1)
Применим эту формулу к нашей задаче. В первом случае
, (2)
. (3)
Разделив уравнение (3) на уравнение (2), получим
.
Ответ:
СТОП! Решите самостоятельно: А6, А7.
Задача 9.4. С помощью фотоаппарата, имеющего размеры кадра 24´36 мм 2 и фокусное расстояние объектива F = 50 мм, проводится фотографирование стоящего человека, рост которого h = 1,8 м. На каком минимальном расстоянии d от человека нужно установить аппарат, чтобы сфотографировать человека во весь рост?
а формула линзы имеет вид
. (2)
Выразим f из (1): и подставим в (2), получим:
м.
Ответ: м.
СТОП! Решите самостоятельно: А8, В5–В7, С1, С2.
Задача 9.5. Требуется сфотографировать конькобежца, пробегающего перед фотоаппаратом со скоростью υ = 10 м/с. Определить максимально допустимую экспозицию при условии, что размытость изображения не должна превышать х = 0,2 мм. Главное фокусное расстояние объектива F = 10 см и расстояние от конькобежца до аппарата d = 5 м. В момент фотографирования оптическая ось объектива аппарата перпендикулярна к траектории движения конькобежца.
Пусть в начальный момент точка А имела своим изображением точку А¢, а в конечный момент – точку А¢¢ (рис. 9.7). Тогда размытость изображения х = = А¢А¢¢. Отрезок АА1 – это перемещение произвольной точки конькобежца за время экспозиции τ, поэтому АА1 = υτ.
Учитывая, что d >> F, можно приближенно считать, что изображение находится в фокальной плоскости линзы объектива, поэтому f » F. Тогда из подобия DАОА1 и DА¢ОА² можем записать:
Ответ: 0,001 с.
Как выбрать объектив
Любой опытный фотограф согласится с тем, что качество фотографий зависит от объектива ничуть не меньше, чем от самой камеры. В современных реалиях, когда даже недорогие фотоаппараты оснащаются матрицами на десятки мегапикселей, можно сказать, что объектив влияет на качество фото даже больше. Может и не стоит строго следовать правилу ортодоксов от фотографии, утверждающему, что объектив должен стоить не меньше, чем сама камера. Но и экономить на оптике – определенно не лучшая идея.
Истина, как всегда, посредине: качественная оптика на посредственной камере улучшит качество фотографий, но полностью раскрыть свой потенциал не сможет. Как и дорогая полнокадровая камера с дешевым кропнутым зумом. Для получения лучшего по цене и стоимости результата характеристики объектива должны соответствовать характеристикам камеры.
Характеристики объективов
Фокусное расстояние – один из первых параметров, на которые смотрит фотограф при выборе объектива. Это неспроста – фокусное расстояние во многом определяет сферу применений объектива.
Чем меньше фокусное расстояние объектива, тем шире угол зрения и тем мельче выглядят объекты на кадре.
Объективы с маленьким фокусным расстоянием (широкоугольные) применяются для съемки панорамных видов, пейзажей, архитектуры, интерьеров т.д. Широкий угол зрения позволяет этим объективам снимать общими планами, захватывая в кадр большое пространство, однако перспектива на таких снимках выглядит искаженной и неестественной. Из-за искажения перспективы на «шириках» при малейшем отклонении камеры от горизонтального положения появляется эффект отклонения вертикалей.
При подъеме широкоугольного объектива вверх вертикальные объекты начинают «валиться» внутрь кадра.
На сверхширокоугольных (фишай) объективах кроме перспективных искажений может проявляться еще и дисторсия – геометрическое искажение, из-за которого прямые линии, расположенные близко к границе кадра, выглядят искривленными. Существуют конструктивные решения, почти полностью устраняющие дисторсию на широкоугольных объективах, но цену оптики они заметно увеличивают.
Но не надо думать, что широкоугольными объективами пользуются только риеэлторы – их свойства широко используются в художественной фотосъемке. Из-за искажения перспективы близко расположенные объекты выглядят неестественно большими по сравнению даже с незначительно удаленными – и это позволяет создавать в кадре интересные эффекты.
Кроме того, никакой другой объектив не способен вместить в кадр столько деталей.
Длиннофокусные объективы, наоборот, угол зрения имеют маленький, зато могут приближать объект съемки. Это – основное преимущество длиннофокусной оптики, используемое при репортажной съемке, при съемке дикой природы и спортивных событий. Чем больше фокусное расстояние, тем сильнее будет увеличен объект съемки.
Второе преимущество длиннофокусной оптики – малая глубина резкости, позволяющая эффективно (и эффектно) отделить снимаемый объект от окружающего фона. Поэтому объективы с фокусным расстоянием 70-200 мм часто используют для портретной съемки.
Объективы с фокусным расстоянием больше 200 мм относятся к профессиональной технике – они тяжелы, неудобны и дороги, но зато позволяют снимать пугливых диких животных в естественных условиях обитания, делать снимки спортсменов с трибуны стадиона и фотографировать архитектурные детали высоких зданий и сооружений.
Без телеобъектива такого кадра не сделать
Основные недостатки длиннофокусной оптики – большой вес и габариты. Кроме того, обилие оптических элементов снижает количество света, проходящего через неё, поэтому светосильной длиннофокусной оптики мало, и стоит она очень дорого. Еще одно проявление большого количества оптических элементов – различные дисторсии, особенно хорошо заметные на недорогих объективах.
Для повседневной и портретной съемки применяются среднефокусные объективы, называемые также нормальными – и не потому, что остальные объективы ненормальные, а потому что именно эти объективы по свойствам наиболее близки к человеческому глазу и обеспечивают изображение с естественной для нашего взгляда перспективой.
Тип фокусного расстояния.
Для увеличения универсальности многие объективы снабжаются возможностью изменения фокусного расстояния (зум). Такой объектив может заменить фотографу целую линейку фикс-объективов (с фиксированным фокусным расстоянием), давая выигрыш по массе и габаритам носимого оборудования. Да и по цене тоже – хоть зумы и дороже фиксов, но если сравнивать цену одного зума и нескольких фиксов (которых он заменяет), то экономия будет вполне заметна.
Кроме того, использование зума снижает нагрузку на фотографа – при использовании фикса для того, чтобы немного укрупнить или уменьшить кадр, фотографу придется самому подойти поближе или отойти подальше. Как шутят фотографы: «на фиксе зум делается ногами». А если сделать это надо быстро? А если за спиной – стена, или под ногами – обрыв? А на объективе с переменным фокусным расстоянием достаточно покрутить кольцо.
Но есть у зумов и недостатки. Во-первых, элементы фиксов подобраны так, чтобы снизить абберации – и они на фиксах минимальны. При переменном же фокусном расстоянии полностью скорректировать абберации не получится и при различных положениях кольца зумирования могут возникать различные искажения. Во-вторых, увеличение количества оптических элементов ведет к снижению светосилы оптики. Поэтому все существующие объективы с максимальной диафрагмой f/1.4 и больше – фиксы.
Каждый объектив оснащен диафрагмой, меняющей количество попадающего в него света. Обычно диафрагма имеет круговую конструкцию, состоящую из нескольких лепестков.
Максимальное и минимальное диафрагменные числа определяют крайние положения диафрагмы. Максимальное диафрагменное число, кроме того, определяет светосилу объектива. Чем больше это число, тем больше света попадает в объектив на максимальной диафрагме. Чем это хорошо?
Во-первых, это позволяет снимать короткими выдержками при слабом освещении и невыcоком ISO, что позволяет добиться высокой четкости изображения и отсутствия цифровых шумов.
Во-вторых, чем больше открыта диафрагма, тем уже ГРИП (глубина резко изображаемого пространства). ГРИП – один из важнейших инструментов предметной и портретной съемки, именно благодаря малой глубине резкости достигается эффект размытия фона при сохранении четкости объекта съемки. Светосильные объективы позволяют намного эффективнее отделять фон и размывать его (эффект бокэ). На эффект бокэ влияет также количество лепестков диафрагмы. Блики, находящиеся в расфокусе, принимают форму отверстия диафрагмы. Считается, что круглые блики создают более «мягкий» эффект бокэ – и для этого число лепестков должно быть побольше (от 8).
Впрочем, следует понимать, что качество бокэ – параметр субъективный, и его влияние на зрителя куда больше зависит от мастерства фотохудожника, чем от характеристик техники.
Байонет – это узел, соединяющий камеру и объектив.
Поскольку обычно объектив покупается к камере, а не наоборот, выбор байонета сводится к тому, чтобы еще раз просмотреть характеристики своей камеры (если вы вдруг забыли). Потому что, в общем случае, не получится подсоединить объектив к камере с другим байонетом. Впрочем, существуют переходники, позволяющие в некоторых случаях решить проблему физического соединения «неродного» объектива и камеры.
Переходник позволит установить на современную камеру «ручную» оптику от старого фотоаппарата.
Байонет, однако же, соединяет объектив с камерой не только физически, но и электрически (а это – автофокусировка, стабилизация, автодиафрагма и т.п.) Обеспечить же беспроблемное электронное сопряжение большинство переходников не в состоянии. Для объективов с байонетами Canon EF существуют «умные» переходники с сохранением электронных функций на байонеты Canon EF-M, Canon RF, Micro 4/3, Sony E и Fujifilm G Mount. Еще у Nikon и Sony есть «умные» переходники с «зеркальной» оптики на беззеркальную камеру: Nikon F на Nikon Z и Sony E; Sony A на Sony E. Все остальные варианты если и удастся соединить с помощью переходника, то настраивать при съемке придется вручную.
«Умные» переходники позволяют полноценно соединять «неродные» камеры и объективы. К сожалению, существуют они не для всех комбинаций.
Автофокусировка позволяет автоматически подстраивать фокус камеры под объект съемки – для этого надо лишь подвести снимаемый объект под отображаемую в видоискателе точку фокусировки. За количество точек фокусировки и за выбор актуальной отвечает электроника камеры, задача объектива – отработать сигнал, полученный от фотоаппарата.
Большинство современных объективов имеет автофокус, исключение составляют некоторые фиксы – и здесь следует быть особо внимательным. Светосильные фиксы на максимальной диафрагме зачастую имеют очень малую ГРИП, и «поймать» резкость вручную на таких объективах без должного опыта и сноровки будет непросто, особенно если у камеры нет вспомогательных режимов для ручной фокусировки – например, focus peaking-а.
Стабилизация может сильно помочь при съемке с рук долгими (от 1/50 с) выдержками. Особенно важна оптическая стабилизация на длиннофокусных камерах – при съемке удаленных объектов даже минимальные перемещения камеры приводят к сильному смещению изображения в кадре, которого матричная и цифровая стабилизация компенсировать не могут.
Совместимость с полнокадровыми фотоаппаратами показывает, на какую матрицу рассчитан объектив – на полнокадровую (FF, Full Frame) или кропнутую. Не всегда можно установить кропнутый объектив на полнокадровую матрицу или наоборот – полнокадровый объектив на кропнутую матрицу.
Байонеты некоторых производителей этого не допускают – например у Canon кропнутые объективы имеют байонет EF-S, отличающийся от полнокадрового EF. А вообще при установке объектива, рассчитанного на кроп-фактор, отличный от кроп-фактора камеры, следует представлять последствия:
— При установке кропнутого объектива на полнокадровую зеркальную камеру следует иметь в виду, что у кропнутых камер зеркало меньше и кропнутые объективы конструируются с учетом именно этого – маленького – размера зеркала. Перед установкой объектива следует убедиться, что оставшегося в камере пространства хватит для хода зеркала, иначе первая же попытка съемки закончится его поломкой.
Если объектив встал в байонет и не мешает зеркалу, то это еще не все. Поскольку кропнутый объектив проецирует изображение на участок, меньший размера матрицы, по краям кадра появляется черная рамка – виньетка.
Nikkor DX 55-300mm f/4.5-5.6G ED VR AF-S (кроп 1,5) на полнокадровом Nikon D610
Некоторые полнокадровые камеры можно перевести в кроп-режим, при котором черная рамка будет убираться, а содержимое кадра – растягиваться на весь экран. Работать в таком режиме с кропнутым объективом удобнее, но следует иметь в виду, что виньетирование на всех объективах происходит по разному. Некоторые кропнутые фиксы уверенно покрывают полный кадр, разве что дисторсия по углам будет значительна. Если виньетка мала, имеет смысл оставить камеру в полнокадровом режиме, а виньетку убирать уже при обработке фото на компьютере.
Ну и напоследок – установка кропнутого объектива на полнокадровый сенсор снижает количество эффективных мегапикселей. Если на 24 Мп полный кадр поставить объектив с кропом 1,3, то количество эффективных мегапикселей станет всего 15,2 Мп.
— При установке полнокадрового объектива на кропнутую камеру особых проблем не будет, разве что «как будто» увеличится фокусное расстояние объектива. Фактически оно останется прежним, но поскольку в кадр будет попадать только часть изображения, то 200 мм полнокадровый объектив на камере с кропом 1,3 будет давать такую же картинку, как на полнокадровом давал бы объектив с фокусным расстоянием 200*1,3 = 260 мм. Особенно это надо учитывать при большом кропе и установке короткофокусных полнокадровых объективов. 18 мм полнокадровый широкоформатник на камере с кропом 2 будет снимать как вполне себе нормальный 36 мм.
Плюсом же такой установки можно считать уменьшение дисторсии – они проявляются всегда по углам, так что в этом случае останутся за кадром.
Макрообъективможет использоваться для макросъемки – фотографирования мелких предметов с небольшого расстояния.
Большинство объективов рассчитаны на съемку со значительным удалением от объекта съемки (50-100 фокусных расстояний), при меньшем расстоянии качество изображения ухудшается. Некоторые объективы могут работать в макрорежиме, при котором минимальная дистанция фокусировки значительно уменьшается (до 10-15 фокусных расстояний), что позволяет снимать некрупные предметы в большом масштабе. Но следует понимать, что такие «универсалы» все равно будут отставать от специализированных макрообъективов как по качеству изображения, так и по максимальному увеличении. Специализированные макрообъективы предназначены только для съемки вблизи, зачастую на фиксированный фокус (высокая светосила весьма важна при макросъемке), имеют максимальный масштаб 1:1 и больше. Короткофокусные макрообъективы имеют большую светосилу, но для съемки их нужно приближать к объекту чуть не вплотную, поэтому они чаще используются для предметной съемки. Для съемки насекомых обычно применяются длиннофокусные макрообъективы.
Варианты выбора объективов
Если вы приобрели полнокадровую камеру, выбирайте среди соответствующих объективов.
Для съемки удаленных объектов и дикой природы вам потребуется телеобъектив.
Снимать подвижные объекты в условиях слабой освещенности очень сложно без светосильной оптики, да и плэнерным портретистам, готовым на все ради красивого бокэ, такие объективы тоже пригодятся.
Сверхширокоугольные объективы позволят вместить в кадр максимум деталей и создать интересные визуальные эффекты.
Для съемки насекомых, ювелирных изделий, миниатюрных моделей и прочих небольших предметов вам понадобится макрообъектив.
При частой съемке с рук объектив со стабилизацией изображения поможет сделать удачный кадр – особенно если в самой камере стабилизации нет.