зачем нужны уравнения в жизни
Зачем нужны уравнения в жизни
Вот пример прямой задачи: сколько весит кусок сплава, на изготовление которого пошло 0,6 дм³ меди (уд. вес 8,9 кг / дм³) и 0,4 дм³ цинка (уд. вес 7,0 кг/ дм³)? При ее решении мы находим вес взятой меди (8,9 · 0,6 = 5,34 (кг)), затем вес цинка (7,0 · 0,4 = 2,8 (кг)) и, наконец, вес сплава (5,34 + 2,8 = 8,14 (кг)). Выполняемые действия и их последовательность диктуются самим условием задачи.
Вот пример косвенной задачи: кусок сплава меди и цинка объемом в 1 дм³ весит 8,14 кг. Найти объемные количества меди и цинка в этом сплаве. Здесь из условия задачи не видно, какие действия ведут к ее решению. При так называемом арифметическом решении нужно проявить подчас большую изобретательность, чтобы наметить план решения косвенной задачи. Каждая новая задача требует создания нового плана. Труд вычислителя затрачивается нерационально. Для рационализации вычислительного процесса и был создан метод уравнений, который является основным предметом изучения в алгебре. Суть этого метода такова.
1.Искомые величины получают особые наименования. Мы пользуемся для этой цели буквенными знаками (предпочтительно последними буквами латинского алфавита х, у, z, u, v). Условие задачи с помощью этих знаков и знаков действий (+, — и т. д.) «переводится на математический язык», т. е. связи между данными и искомыми величинами мы выражаем не словами и фразами разговорного языка, а математическими знаками. Каждая такая «математическая фраза» и есть уравнение.
2.После этого мы решаем уравнение, т. е. находим значения искомых неизвестных величин. Решение уравнения производится совершенно механически, по общим правилам. Нам не приходится больше учитывать особенности данной задачи; мы только должны применять раз навсегда установленные правила и приемы. (Выводом этих правил и занимается в первую очередь алгебра.)
Таким образом, уравнения нужны для того, чтобы механизировать труд вычислителя. После того как уравнение составлено, решение его можно получить вполне автоматически (в настоящее время сконструирован ряд таких автоматов). Вся трудность решения задачи сводится лишь к составлению уравнения.
Как используются линейные уравнения в повседневной жизни?
Линейные уравнения используют одну или несколько переменных, где одна переменная зависит от другой. Практически любая ситуация, когда существует неизвестное количество, может быть представлена линей
Содержание:
Линейные уравнения используют одну или несколько переменных, где одна переменная зависит от другой. Практически любая ситуация, когда существует неизвестное количество, может быть представлена линейным уравнением, например, вычисление дохода с течением времени, расчет скорости пробега или прогнозирование прибыли. Многие люди используют линейные уравнения каждый день, даже если они делают вычисления в своей голове, не рисуя линейный график.
Различные цены
Представьте, что вы едете на такси во время отпуска. Вы знаете, что служба такси берет 9 долларов, чтобы забрать вашу семью из отеля, и еще 0,15 доллара за милю за поездку. Не зная, сколько миль будет до каждого пункта назначения, вы можете установить линейное уравнение, которое можно использовать для определения стоимости любой поездки на такси, которую вы совершаете в своей поездке. Используя «x» для представления количества миль до пункта назначения и «y» для представления стоимости поездки на такси, линейное уравнение будет иметь вид: y = 0,15x + 9.
Ставки
Линейные уравнения могут быть полезным инструментом для сравнения ставок заработной платы. Например, если одна компания предлагает платить вам 450 долларов в неделю, а другая предлагает 10 долларов в час, и обе просят вас работать 40 часов в неделю, какая компания предлагает лучшую ставку оплаты? Линейное уравнение может помочь вам понять это! Первое предложение компании выражается как 450 = 40x. Предложение второй компании выражается как y = 10 (40). После сравнения двух предложений уравнения показывают, что первая компания предлагает лучшую ставку оплаты в 11,25 долл. В час.
составление бюджета
Планировщик вечеринок имеет ограниченный бюджет на предстоящее мероприятие. Шелл нужно выяснить, сколько будет стоить ее клиенту арендовать помещение и платить за еду на человека. Если стоимость аренды помещения составляет 780 долл. США, а цена на человека на продукты питания составляет 9,75 долл. США, можно построить линейное уравнение, чтобы показать общую стоимость, выраженную в виде у, для любого количества присутствующих людей, или х. Линейное уравнение будет записано в виде y = 9,75x + 780. С помощью этого уравнения планировщик вечеринок может заменить любое количество гостей вечеринки и предоставить ее клиенту фактическую стоимость мероприятия с учетом расходов на питание и аренду.
Делать прогнозы
Что такое уравнение? Как решать уравнения?
Уравнение — одно из краеугольных понятий всей математики. Как школьной, так и высшей. Имеет смысл разобраться, правда? Тем более, что это очень простое понятие. Ниже сами убедитесь. 🙂 Так что же такое уравнение?
То, что это слово однокоренное со словами «равный», «равенство», возражений, думаю, ни у кого не вызывает.
Уравнение — это два математических выражения, соединённых между собой знаком «=» (равно).
Но… не каких попало. А таких, в которых (хотя бы в одном) содержится неизвестная величина. Или, по-другому, переменная величина. Или, сокращённо, просто «переменная». Которая обычно обозначается буквой «х».
Переменных может быть одна, может быть несколько. В школьной математике чаще всего рассматриваются уравнения с одной переменной. И мы тоже пока что будем рассматривать уравнения с одной переменной. С двумя переменными или более — в специальных уроках.
Что значит решить уравнение?
Переменная, входящая в уравнение, может принимать любые допустимые математикой значения. На то она и переменная. 🙂 При каких-то значениях переменной получается верное числовое равенство, а при каких-то — нет.
Решить уравнение означает найти ВСЕ такие значения переменной, при подстановке которых в исходное уравнение получается верное равенство. Или, более научно, верное тождество. Или доказать, что таких значений переменной не существует.
Корень может быть один, может быть несколько. А может быть и бесконечно много корней — целый интервал или даже вообще вся числовая прямая от –∞ до +∞. Да, такое тоже бывает! Всё от конкретного уравнения зависит.)
А бывает и такое, что нельзя найти такие иксы, которые давали бы нам верное равенство. Принципиально нельзя. По определённым причинам. Нету таких иксов…
В таких случаях обычно говорят, что уравнение не имеет корней.
Для чего нужны уравнения?
Вопрос смешной. Для жизни! В школе, как правило, уравнения нужны для решения текстовых задач. Это, напоминаю, задачи на движение, на работу, на проценты и многие другие.
А во взрослой жизни без уравнений невозможны было бы ответить даже на самые обычные, но жизненно важные вопросы повседневности: какая будет погода завтра, выдержит ли заданную нагрузку здание. Или лифт. Или самолёт. Куда попадёт ракета… И не было бы сейчас среди нас ни синоптиков, ни инженеров, ни бухгалтеров, ни экономистов, ни программистов… За ненадобностью. Внушает?)
Почему это так? А потому, что уравнениями описываются почти все известные человеку природные явления и процессы. Изменение давления и температуры воздуха с высотой, закон всемирного тяготения, размножение бактерий, радиоактивный распад, химические реакции, электричество, спрос и предложение — в основе всего этого лежат математические уравнения! Простые, сложные — всякие. Какое явление или ситуация, такое и уравнение.)
Уравнения — очень мощный и универсальный инструмент для решения самых разных прикладных задач.
А какие бывают уравнения?
Уравнений в математике несметное количество. Самых разных видов. Но всё многообразие уравнений можно условно разделить всего на 4 категории:
3. Дробные (или дробно-рациональные),
Разные категории уравнений требуют и разного подхода к их решению: линейные уравнения решаются одним способом, квадратные — другим, дробные — третьим, тригонометрические, логарифмические, показательные и прочие — тоже решаются своими методами.
Прочих уравнений, разумеется, больше всего, да…) Это и иррациональные, и тригонометрические, и показательные, и логарифмические, и многие другие уравнения. И даже дифференциальные уравнения (для студентов), где роль неизвестного играет не число, а функция. Или даже семейство функций. 🙂
В соответствующих уроках мы подробно разберём все эти типы уравнений. А здесь у нас — базовые приёмы и правила.
Называются эти правила — тождественные (или — равносильные) преобразования уравнений. Их всего два. И нигде их не обойти. Так что знакомимся!
Как решать уравнения? Тождественные (равносильные) преобразования уравнений.
Решение любого уравнения заключается в поэтапном преобразовании входящих в него выражений. Но преобразований не абы каких, а таких, чтобы от шага к шагу суть всего уравнения не менялась. Несмотря на то, что после каждого преобразования уравнение будет видоизменяться и, в конечном счёте, станет совсем не похоже на исходное.
Такие преобразования в математике называются равносильными или тождественными. Их довольно много, но среди всего многообразия тождественных преобразований уравнений выделяется два базовых. О них и пойдёт речь в этом уроке. Да-да, всего два! Но — крайне важных! И каждое из них заслуживает отдельного внимания.
Применение этих двух тождественных преобразований в том или ином порядке гарантирует успех в решении 99% уравнений математики. Заманчиво, правда?
Первое тождественное преобразование:
К обеим частям уравнения можно прибавить (или отнять) любое (но одинаковое!) число или выражение (в том числе и с переменной). Суть уравнения от этого не изменится.
Это преобразование вы применяете всюду, наивно думая, что переносите какие-то члены из одной части уравнения в другую, меняя знаки. 🙂
Например, такое крутое уравнение:
Тут и думать нечего, перебрасываем тройку вправо, меняя минус на плюс:
А что же происходит в действительности? А на самом деле вы… прибавляете к обеим частям уравнения тройку!
Вот что у вас происходит:
И результат получается тем же самым:
Вот и всё. Слева остаётся чистый икс (чего мы, собственно, и добиваемся), а справа — что уж получится. Но самое главное то, что от прибавления тройки к обеим частям суть всего уравнения не изменилась!
Дело в том, что привычный нам перенос слагаемых из одной части в другую со сменой знака — это просто сокращённый вариант первого тождественного преобразования.
И зачем нам так глубоко копать? В уравнениях — незачем. Переносите себе спокойно и не парьтесь. Только знаки менять не забывайте.) А вот в неравенствах привычка к переносу может и слегка обескуражить, да…
Это было первое тождественное преобразование. Переходим ко второму.
Второе тождественное преобразование:
Обе части уравнения можно умножить (разделить) на одно и то же отличное от нуля число или выражение.
Это тождественное преобразование мы вы постоянно применяете, когда решаете что-нибудь совсем уж жуткое типа:
Тут каждому ясно, что х=3. А вот как вы получили этот ответ? Подобрали? Угадали?
Чтобы не подбирать и не гадать (мы с вами математики, а не гадалки), нужно понять, что вы просто поделили обе части уравнения на четвёрку. Которая нам и мешает.
Эта палка с делением означает, что на четвёрку делятся обе части нашего уравнения. Через дроби эта процедура выглядит так:
Слева четвёрки благополучно сокращаются, остаётся икс в гордом одиночестве. А справа при делении 12 на 4 получается, понятное дело, тройка. 🙂
Звучит невероятно, но эти два (всего два!) простых преобразования лежат в основе решения всех уравнений математики! Да-да, именно всех, я нисколько не преувеличиваю! От линейных и квадратных в школе до дифференциальных в ВУЗе.)
Ну что, посмотрим на тождественные преобразования уравнений в действии?
Применение тождественных преобразований к решению уравнений.
Начнём с первого тождественного преобразования. Переноса вправо-влево.
Пример для новичков:
Дело нехитрое. Это линейное уравнение. Работаем прямо по заклинанию: «С иксами влево, без иксов — вправо».
Эта мантра — универсальная инструкция по применению первого тождественного преобразования. Вот и смотрим на уравнение. Какое слагаемое с иксом у нас справа? Что? 2х? Не-а!) Справа у нас -2х (минус два икс)! Поэтому при переносе в левую часть минус поменяется на плюс:
1 — х +2х = 3
Полдела сделано, иксы собрали слева. Осталось все числа собрать справа. Слева в уравнении стоит единичка. Опять вопрос — с каким знаком? Ответ «с никаким» не катит.) Слева перед единицей и вправду ничего не написано. А это значит, что перед ней стоит знак «плюс». Так уж в математике повелось: ничего не написано — значит, плюс.)
И поэтому вправо единичка перенесётся уже с минусом:
-х + 2х = 3 — 1
Вот почти и всё. Слева приводим подобные, а справа — считаем. И получаем:
Это было совсем примитивное уравнение.
Теперь пример покруче, для старшеклассников:
Уравнение логарифмическое. Ну и что? Какая разница? Всё равно первым шагом делаем базовое тождественное преобразование («С иксами влево ….»). Для этого слагаемое с иксом (то есть, —log3x) переносим влево. Со сменой знака:
А числовое выражение (log34) переносим вправо. Также со сменой знака, разумеется:
Вот и всё. Справа получилась чистая формула. Кто дружит с логарифмами, тот в уме дорешает уравнение и получит:
Что? Хотите синусы? Пожалуйста, вот вам синусы:
Получили простейшее тригонометрическое уравнение с синусом, решить которое (для знающих) также не составляет никакого труда.
Видите, насколько универсально первое равносильное преобразование! Встречается везде и всюду и не обойти его никак… Именно поэтому так важно уметь его делать на автомате и без ошибок.
Собственно, ошибиться здесь можно лишь в одном — забыть сменить знак при переносе. Что и происходит сплошь и рядом. Внимательность никто не отменял, да…)
Ну что, продолжаем наши игры? Развлекаемся теперь со вторым преобразованием!)
Крутяк, прямо скажем.) Ладно, это эмоции…
Смотрим и соображаем: что нам мешает в этом уравнении? Что-что… Да семёрка мешает! Хорошо бы от неё избавиться. Да так, чтобы исходное уравнение не испортить.)
Но как? Перенести вправо? Ээээ… Стоп! Нельзя.) Семёрка с иксом умножением связана. Коэффициент, видите ли.) Нельзя её оторвать от икса и вправо перенести. Вот всё выражение 7х целиком — пожалуйста (вопрос — зачем?). А семёрку отдельно — никак нет.
Самое время про умножение/деление вспомнить! Нам ведь в ответе чистый икс нужен, не так ли? А семёрка — мешает. Вот и делим левую часть на семь. «Очищаем» икс от коэффициента. Так нам надо. Но тогда и правую часть тоже надо поделить на семь: этого уже математика требует. Что уж там получится, то и получится. Но пример хороший. Я старался.) 28 на 7 замечательно делится. Получится 4.
Или такое уравнение:
Что здесь нам мешает? Дробь 1/6, не так ли? Вот давайте и избавимся от неё. Безопасно для уравнения.) Как? Ну, можно поступить аналогично — поделить обе части на эту самую 1/6. Но в уме это не очень удобно. Кое-кто и запутается…
Но мы же не только делить, мы ещё и умножать умеем!) Вспоминаем из младших классов, после какого действия у нас пропадает дробь? Правильно! Дробь у нас пропадает при умножении на число, равное (или кратное) её знаменателю. Вот и умножим обе части нашего уравнения на 6. Слева всё равно чистый икс получится, а умножение правой части на 6 — не самая трудная работа.)
Вот и всё.) Умножение обеих частей уравнения на нужное число позволяет сразу избавляться от дробей, минуя промежуточные выкладки, в которых, между прочим, запросто можно и ошибок наляпать. Короче дорога — меньше ошибок!
Теперь снова на машину времени и — в старшие классы:
Чтобы добраться до икса и тем самым решить это крутое тригонометрическое уравнение, нам надо сначала получить слева чистый косинус, безо всяких коэффициентов. А двойка мешает. 🙂 Вот и делим на 2 всю левую часть:
Но тогда и правую часть тоже придётся разделить на двойку: это уже МАТЕМАТИКЕ надо. Делим:
Получили справа табличное значение косинуса. И теперь уравнение решается за милую душу.)
Вот и вся премудрость. Как видите, тождественные преобразования уравнений — штука полезная. И при этом не самая сложная. Перенос да умножение/деление. Однако далеко не у всех они получаются с первого раза и без ошибок, ох не у всех… Основные проблемы здесь две.
Проблема первая (для малоопытных):
Иногда ученик думает, что упрощение уравнений делается по одному, раз и навсегда установленному правилу. И никак не может уловить и понять это правило: в каких-то примерах начинают с домножения (или деления), в каких-то — с переноса. Где-то три раза переносят и ни разу не домножают…
Например, такое линейное уравнение:
С чего начинать? Можно начать с переноса:
А можно сначала поделить обе части на пятёрку, а затем уж переносить. Тогда сразу числа попроще станут:
Как видим, и так и сяк решать можно. И это — в примитивном примере! Вот и возникает у неопытных учеников вопрос: «Как правильно?»
По-всякому правильно! Кому как удобнее. 🙂 Универсального рецепта здесь нет и быть не может. Математика предлагает вам на выбор два вида преобразований уравнений. А порядок этих самых преобразований зависит исключительно от исходного уравнения, а также от личных предпочтений и привычек решающего.
Проблема вторая (для всех…ну… почти):
Ошибки в вычислениях. В преобразованиях постоянно приходится перемножать скобки. Заключать выражения в скобки и раскрывать скобки. Умножать и делить дроби. Работать со степенями… Короче, в наличии весь набор элементарных действий математики. Со всеми вытекающими…
РОЛЬ РЕАЛЬНОЙ МАТЕМАТИКИ В ПОВСЕДНЕВНОЙ ЖИЗНИ ЧЕЛОВЕКА
Ищем педагогов в команду «Инфоурок»
Обобщение и распространение в педагогических коллективах опыта практических результатов своей профессиональной деятельности
Направление: Современные технологии в сельском хозяйстве
РОЛЬ РЕАЛЬНОЙ МАТЕМАТИКИ В ПОВСЕДНЕВНОЙ ЖИЗНИ ЧЕЛОВЕКА
преподаватель математики и информатики
Тюнгюлюнского филиала ГБПОУ РС (Я) «ЯСХТ»
1. Теоретические основы
2. Практическое исследование
2.1 математика в жизни человека……………………. 7
РОЛЬ РЕАЛЬНОЙ МАТЕМАТИКИ В ПОВСЕДНЕВНОЙ ЖИЗНИ ЧЕЛОВЕКА
преподаватель Тюнгюлюнского филиала
ГБПОУ РС (Я) «Якутский сельскохозяйственный техникум».
В докладе рассмотрен вопрос о роли реальной математики в повседневной жизни человека. Для активизации познавательной деятельности учащихся составлены задачи по текстовой и реальной математике, тем самым повысила интерес к урокам математики.
Ключевые фразы: Реальная математика, арифметика, логическое мышление, семейный бюджет, связь с жизнью.
Однажды у меня возник вопрос «А для чего нужна математика? Для чего мы учим различные уравнения и теоремы? Мы же пользуемся математикой только в магазине при покупке продуктов. Почему мы ее изучаем с детского сада?» А я попыталась узнать всю важность этого предмета.
Математика окружает нас везде. Благодаря ей мы решаем множество вопросов в повседневной жизни. Мало кто задумывался, что математика окружает нас с первых дней жизни. Любой ребенок даже, который не изучал арифметику сталкивался с цифрами. Он узнает в поликлинике свой вес, рост, так же ему известен его возраст. А еще он не один раз за день столкнется с различными задачами по подсчету игрушек в комнате или конфет, чтобы угостить своих друзей.
С возрастом мы решаем все больше и больше задач: Какое количество продуктов нужно купить, чтобы хватило на неделю? Сколько нужно зарабатывать, чтобы накопить на дачу и поездки за границу? Сколько краски нужно купить, чтобы покрасить стены в спальне?
В школе мы изучаем математику с первого класса и до окончания школы, потом математике нас учат в университете. С каждым годом курс расширяется становиться более углубленным, все больше предметов связанно с математикой. В средней школе у нас появляется алгебра и геометрия в замен арифметике. Наш кругозор расширяется. Мы можем понимать, видеть то, что раньше нам казалось не ясным. Математические науки развивают наше мышление, учат нас соображать.
Без знания математики вся современная жизнь была бы невозможна. У нас не было бы хороших домов, потому что строители должны уметь измерять, считать и сооружать. Наша одежда была бы очень грубой, так как ее нужно хорошо скроить, а для этого точно все измерить. Не было бы ни железных дорог, ни кораблей, ни самолетов, никакой большой промышленности. Не было бы радио, телевидения, кино, телефона и тысячи других вещей, составляющих часть нашей цивилизации. Использование математики, измерение «насколько?», «как долго?» являются жизненно необходимой частью мира, в котором мы живем.
Благодаря математике появились вычислительные счетные машины. Вычислительная техника прошла путь от простых счётов, арифмометров, логарифмических линеек до микрокалькуляторов и компьютеров. Сейчас вычислительные машины используются во всех отраслях народного хозяйства: в статистике, торговле, автоматизированном управлении заводами и фабриками. Машины не только считают, они могут делать переводы с одного языка на другой, могут сочинять музыку, играть в шахматы.
Проблема: В начале учебного года мною проведено анкетирование в обучаемых группах: «мастер животноводства», «тракторист-машинист 2 курс», «тракторист-машинист 3 курс». В целях получения информации уровня обучающихся и выявлены, что интерес учащихся к уроку математики был не очень высокий.
Актуальность : В нашей повседневной жизни мы настолько привыкли к математике, что даже не замечаем, что пользуемся ею постоянно. А ведь до сих пор студенты задают вопрос «А зачем нам нужна математика? Только в магазин сходить?». Так для чего же мы изучаем дроби, площадь, периметр, объем? Для чего нужны геометрические сведения? Где каждому человеку математика необходима в повседневной жизни? А что будет, если математику совсем не знать? Необходимо рассмотреть все виды своей деятельности и доказать, что без математики не обойтись в быту.
Цель : Изучить, где математика встречается в жизни и доказать ее необходимость.
Задачи :1. Изучить виды деятельности, где человеку не обойтись без математики.
2. Ответить на вопросы: Зачем нужна математика? Что может дать математика каждой отдельной личности?
3. Составление примеры задач по текстовой и реальной математике.
Гипотеза : Математика в нашей жизни необходима не только в определенных профессиях, но и в повседневной жизни.
«Математику уже затем
изучать следует, что она ум в
С древних времен в своей повседневной жизни человек не мог обойтись без счета. У каждого народа необходимость в простейших арифметических подсчетах возникала задолго до появления первых зачатков письменности, потому что постижение Мира во всем его многообразии постоянно требовало количественной оценки обретенных знаний. Самой древней математической деятельностью был счет. Счет был нужен, чтобы следить за поголовьем скота и вести торговлю. Некоторые первобытные племена подсчитывали количество предметов, сопоставляя им различные части тела, главным образом пальцы рук и ног. Наскальный рисунок, сохранившийся до наших времен от каменного века, изображает число 35 в виде серии выстроенных в ряд 35 палочек-пальцев. Первыми существенными успехами в арифметике стали концептуализация числа и изобретение четырех ᴏϲʜовных действий: сложения, вычитания, умножения и деления. Первые достижения геометрии связаны с такими простыми понятиями, как прямая и окружность.
Математика в жизни человека.
Многие известные математики говорят, что главное в математике — научить человека мыслить, ставя порою перед ним очень сложные задания. «Математика развивает логическое мышление, умение самостоятельно решать проблемы, способность быстро уловить суть и найти к жизненной задаче наиболее подходящий и простой подход»- говорят нам взрослые. Математика тесно связана с нашей повседневной жизнью. Математика встречается в нашей жизни практически на каждом шагу и не такая уж она серая и скучная, а разноцветная и веселая.
Осенью я решила провести опрос студентов нашего техникума и выяснить насколько они осознают значимость математики в повседневной жизни. Ребятам разного возраста было предложено продолжить фразу: « Я изучаю математику потому, что…» со следующими вариантами ответов: