зачем нужно электромагнитное поле
Секреты синхронизации электромагнитных полей Земли и живого организма
Организм человека это очень сложный механизм, работа которого зависит не только от целостности деталей, но и от воздействия внешних факторов. Мы частенько слышим формулировки «метеочувствительность», «суставы болят на погоду», «хандра во время дождя» и т.д. На первый взгляд все это кажется не особо научным, однако никогда не стоит отклонять нестандартные варианты объяснения чего-либо. Связь между работой системы и средой, ее окружающей, так или иначе есть всегда. Вопрос в том, как она проявляется и как это доказать. Сегодня мы с вами познакомимся с исследованием, в котором ученые из университета Тель-Авива впервые выявили доказательства связи между активностью электрического поля живого организма и электрического поля окружающей среды. Как именно проявляется связь электрических полей, зачем она нужна и откуда появилась? Об этом мы узнаем из доклада ученых. Поехали.
Основа исследования
Авторы исследования указывают на то, что одним из самых сложных вопросов в биологии является определение происхождения колебаний электрического поля в диапазоне чрезвычайно низких частот. Одной из самых удивительных особенностей этой тайны является факт того, что многие виды организмов (позвоночные и беспозвоночные) проявляют одинаковую низкочастотную электрическую активность, независимо от размера их мозга, сложности мозга или даже наличия коры. Другими словами, у человека, у собаки, у кота и ворона, например, фактически одинаковая электрическая активность.
Изображение №1
Конкретнее говоря, зоопланктон, обитающий в океанах, проявляет электрическую активность с пиком в 7 и 14 Гц (1а). Более крупные позвоночные и беспозвоночные (морской лев, змея, акула и осьминог; 1b) также показывают спектры, которые встречаются в основном ниже 50 Гц. У человека показатели тоже не превышают 50 Гц (1с). Любопытно, что у большинства видов доминирующим пиком в активности является 8 Гц. Конечно, в электромагнитной активности разных видов есть отличия, однако и сходств немало.
Одним из самых явных отличий является амплитуда спектров, которая отличается у разных классов позвоночных. При этом самые высокие амплитуды встречаются именно у млекопитающих. У позвоночных почти всегда есть максимум от 5 до 15 Гц, который падает на более высоких частотах примерно в два раза для каждой октавы* до примерно 1/10 при 100 Гц.
Октава* — в данном случае это логарифмическая единица отношений между частотами, когда одна октава соответствует удвоению частоты. Например, частота, большая на одну октаву от 40 Гц, равна 80 Гц.
Большая часть электрической активности у людей происходит в диапазоне частот ниже 50 Гц с таким распределением по типу волн:
Изображение №2
Ученые предполагают, что примитивные формы жизни на нашей планете демонстрируют состояние, близкое к состоянию «глубокий покой». То есть они демонстрируют спектр, более близкий к тому, что на графике выше, чем нормальный альфа-спектр, близкий к 10 Гц.
Не стоит забывать и то, что мозг человека достаточно часто проявляет повышенную активность около 26 Гц (1c), что близко к частоте четвертой моды резонанса Шумана*.
Резонанс Шумана* — явление образования стоячих электромагнитных волн низких и сверхнизких частот между поверхностью Земли и ионосферой.
Винфрид Отто Шуман
Еще в 1952 году немецкий физик Винфрид Отто Шуман (1888-1974) высказал теорию: учитывая высокую проводимость Земли и ионосферы, пространство Земля-ионосфера должна обладать своеобразным резонансом электромагнитных волн.
Шуман рассчитал, что эти гармонические стоячие волны должны находиться в диапазоне чрезвычайно низких частот. Предположив, что резонанс существует без потерь (без поглощения в ионосфере), он предсказал, что первая мода резонансных частот должна возникать при 10 Гц. Уже в 1960 году Бальзером и Вагнером были проведены первые спектральные измерения, которые показали, что резонансные частоты возникают примерно при 8, 14, 20, 26,… Гц из-за частичного поглощения ионосферы.
Источником этих волн резонанса Шумана является глобальная грозовая активность, а электромагнитные волны излучаются из каналов молнии с некоторой вертикальной составляющей переноса заряда.
На этих частотах в атмосфере очень мало затухания (0.1 дБ/Мм или 1 дБ на 10000 км). Следовательно, волны чрезвычайно низких частот от молний в любой точке планеты способны распространяться в любое другое место за счет естественного волновода, образованного ионосферой и поверхностью Земли. Конструктивная интерференция этих радиоволн при их движении вокруг Земли (40075 км) приводит к появлению стоячих волн и их гармонии (λ
nc / 40000), известных как резонансы Шумана.
Изображение №3
Учитывая, что каждую секунду на планете возникает от 50 до 100 молний, фоновое поле резонанса Шумана присутствует в атмосфере постоянно (график выше).
Спектр резонанса Шумана изменяется по амплитуде и частоте в зависимости от времени суток, времени года и относительного местоположения на Земле по сравнению с грозовыми районами. На данный момент известно, что большая часть грозовой активности протекает над тропическими участками суши (Юго-Восточная Азия, Юго-Восточная Африка и Южная Америка) и лишь 10% глобальной грозовой активности приходится на Мировой океан.
На расстояниях, превышающих несколько тысяч километров от грозы, электромагнитное поле состоит в основном из горизонтального магнитного поля и вертикального электрического поля. Из-за модальной структуры стоячих волн резонанса Шумана и ортогональности электрического и магнитного полей, резонанс Шумана на расстоянии 10000 км от тропиков покажет максимум при 8 Гц для магнитного поля, однако минимум при 8 Гц для электрического поля. Противоположная ситуация будет наблюдаться при расстоянии в 20000 км от грозового региона.
Соотношение амплитуд различных мод резонанса Шумана изменяется при изменении расстояния от источника до наблюдателя. Следовательно, спектры резонанса Шумана не будут одинаковыми во всех местах, даже если глобальная грозовая активность будет постоянной в течение всего периода наблюдения.
Извержение вулкана Колима (Мексика) 2017 года (фотограф: Серхио Тапиро / Sergio Tapiro).
Резонанс Шумана, хоть и был открыт в середине прошлого века, существует на планете с момента образования атмосферы и ионосферы. Первоначально атмосфера создавалась выделением газа из вулканов. Даже в наши дни можно наблюдать, как извержения вулканов сопровождаются молниями. Тем не менее, естественная атмосферная конвекция на ранней Земле также привела бы к электрификации облаков и образованию разрядов молнии. Ионосфера и, следовательно, волновод, необходимые для создания резонанса Шумана, поддерживаются солнечным излучением, сталкивающимся с атомами и молекулами в нашей верхней атмосфере, производя ионы и свободные электроны, которые приводят к отражению электромагнитных волн в диапазоне чрезвычайно низких частот.
Следовательно, делают выводы исследователи, резонансы Шумана существуют на нашей планете с самого начала жизни или, по крайней мере, больше 2-3 миллионов лет.
И вот тут начинается самое интересное, ведь существует удивительное сходство наблюдаемых частот резонанса Шумана и электрической активности организмов. Ученые задаются вопросом, является ли это простым совпадением или все же имеется некая ранее незамеченная связь. Ранее ответить на этот вопрос уже пытались, проводя эксперименты с людьми, птицами и даже мухами. Однако ответ был не очень внятным, потому современные ученые решили проанализировать былой опыт и, возможно, дополнить его собственными открытиями.
Результаты исследования (прошлое и настоящее)
Итак, мы уже знаем, что грозовая активность и, следовательно, резонанс Шумана существовали на Земле с незапамятных времен, т.е. миллиарды лет. За счет этого поддерживалось естественное фоновое поле чрезвычайно низких частот по всей планете. Это естественное поле обладает определенным максимумом частоты с основной модой около 8 Гц.
Зная это, можно ли задать вопрос о том, могли ли биологические виды использовать это естественное поле для тренировки собственных систем? Оказывается, не только можно, но и нужно задать этот вопрос.
Среди многочисленных нелинейных эффектов в природе синхронизация является явлением, которое, вероятно, наиболее часто наблюдается во многих различных системах. Синхронизация представляет собой взаимосвязь между двумя объектами, которые колеблются во времени. Синхронизация происходит, когда существует фиксированное фазовое соотношение между двумя объектами.
В XVII веке Христиан Гюйгенс (1629-1695) первым открыл эффект синхронизации. Он заметил, что маятниковые часы, висящие на общей опоре, со временем переходят в состояние фазовой синхронизации, то есть колебания их маятников начинают совпадать.
Пара маятниковых часов на общей опоре и портрет Христиана Гюйгенса.
Между объектами должна быть некая связь, которая и приводит к их синхронизации. В случае с часами этой связью были слабые вибрации, передаваемые через стену (общая опора) от одних часов к другим.
Синхронизация семи метрономов, демонстрирующая наблюдения Христиана Гюйгенса.
Эффект синхронизации присутствует во многих системах. Например, в биологических системах синхронизация может присутствовать на микроскопическом уровне в клеточных популяциях, в одиночных нейронах, в крупных нейронных сетях, в динамике кардио-респираторного развития человека и даже в коллективном поведении отдельных организмов.
Следовательно, синхронизация представляет собой механизм самоорганизации в сложных системах, значительно уменьшающий степень свободы системы из-за взаимодействия с окружающей средой или взаимодействия между подсистемами.
Классическая теория синхронизации оперирует так называемыми самоподдерживающимися периодическими осцилляторами. Если на автономный генератор воздействует внешняя периодическая сила соответствующей амплитуды и частоты, колебания системы будут синхронизироваться по фазе с внешним сигналом. Потому синхронизацию можно более конкретно определить как фазовую и частотную синхронизацию.
Из этого определения и произрастает теория исследователей. Ученые считают, что в течение эволюции биологические системы могли быть синхронизированы по фазе с фоновыми электрическими полями атмосферы, определяемыми резонансами Шумана. В ходе эволюции, особенно на ее ранних этапах, резонанс Шумана был единственным постоянным электромагнитным полем, доступным для такой синхронизации.
Кроме того, учитывая, что ранние формы жизни возникли в океанах, следует отметить, что волны чрезвычайно низких частот с планетарной длиной волны могут проникать на сотни метров в фотическую зону океанов (освещаемая солнцем верхняя толща воды).
Глубина проникновения через кожу для электромагнитных волн определяется как:
где σ — проводимость (См/м, т.е. сименс на метр); f — частота в Гц.
Для морской воды (σ = 3.3 См/м) и крови (σ = 0.7 См/м) глубина проникновения электромагнитной волны (8 Гц) составляет приблизительно 100 м и 210 м соответственно.
Это подразумевает, что организмы в фотической зоне в морской воде (до 100 м глубины) будут чувствовать волны резонанса Шумана и что внутренности организмов будут подвергаться воздействию амплитуд поля, аналогичных тем, которые встречаются в атмосфере. Следовательно, организмы в океанах постоянно подвергаются воздействию полей резонанса Шумана.
Стохастический резонанс возникает, когда нелинейная система подвергается воздействию слабого периодического сигнала, который обычно не обнаруживается, но он становится обнаруживаемым из-за явления резонанса между стохастическим шумом и слабым детерминированным периодическим сигналом.
Ранее проведенные исследования стохастического резонанса показали, что повышение уровня фонового шума часто приводило к увеличению силы выходного сигнала.
Шум может быть случайным или систематическим. Обычно шум воспринимается как помехи, связанные с передачей и обнаружением сигналов. Однако стохастический резонанс подразумевает обратное. Фактически, добавление соответствующего количества шума может усилить сигнал и, следовательно, помочь в его обнаружении в шумной среде.
Настраивая амплитуду внешнего шума на внутренние свойства системы, механизм периодического возбуждения и внешний шум могут взаимодействовать друг с другом, передавая энергию из спектра шума на единую частоту, которая согласована с сигналом. Это взаимодействие между внешним шумом и сигналом может привести к четкому максимуму в спектре мощности выходного сигнала, увеличивая отношение сигнал / шум. Однако амплитуда шума также важна, и если шум слишком велик, сигнал будет нарушен.
Авторы исследования предполагают, что вызванные молниями поля чрезвычайно низких частот и резонансы Шумана могут действовать как «шум», используемый биологическими системами через явление стохастического резонанса. Этот постоянный источник шума в течение миллионов лет эволюции мог влиять на развитие биологических систем, и в значительной степени определять электрическую активность организмов.
Мы знаем, что когда-то уже проводились эксперименты с людьми, которые должны были подтвердить вышеописанную теорию. Так в 1973 году был проведен опыт с циркадными ритмами (биологический ритм человека с периодом в 24 часа). Под землей были построены две одинаковые комнаты, где не было окон и дверей, от чего нельзя было визуально определить время суток. В каждую из комнат поселили по добровольцу, которые жили в таких условиях около месяца. Ученые отслеживали активность (сон и бодрствование) и температуру тела участников опыта.
Эти переменные достаточно предсказуемы, когда человек может видеть смену дня и ночи. Однако в условиях, когда визуальных сигналов нет, биологические часы испытуемых начинали «растягивать» сутки до 25, 26 и даже до 27 часов (график ниже: ось Х — час дня, ось Y — день месяца).
Изображение №4
В первую неделю эксперимента биологические часы, наблюдаемые у субъектов, изменились до 26.6 часов в сутки. Затем в одной из комнат в течение второй недели непрерывно включался генератор электрического поля с частотой 10 Гц. Биологические часы, по-видимому, стабилизировались и пытались вернуться к нормальному суточному ритму (наблюдалось снижение до 25.8 часа). Еще через неделю поле было выключено, и биологические часы повторно начали отклоняться от реального суточного ритма до 36.7 часов в сутки.
Тем временем биологические часы второго испытуемого, который не подвергался воздействию внешнего электрического поля, оставались стабильными на протяжении всех трех недель.
Данный опыт был проведен повторно, но с участием птиц. Результаты были схожими с теми, что наблюдались у людей — наблюдались изменения в циркадных ритмах из-за влияния электрического сигнала 10 Гц.
Использование именно 10 Гц, а не 8 Гц, обусловлено тем, что изначально сам Шуман считал, что резонанс чрезвычайно низких частот должен быть именно 10 Гц, поскольку ионосфера не имеет погрешностей в отражении. Это, конечно, не так, потому необходимо было использовать 8 Гц, а точнее 7.8 Гц — истинная частота первой моды.
В 2016 году был проведен еще более необычный опыт, в котором брали участие крысы с повреждением спинного мозга. На подопытных крыс воздействовало магнитное поле двух разных частот: 15.72 (в два раза больше первой моды резонанса Шумана) и 26 Гц (четвертая мода резонанса Шумана).
Магнитные поля применялись 8 минут в день, 5 дней в неделю в течение одного месяца. На следующий месяц время воздействия увеличили до 20 минут в день 5 дней в неделю.
В целом, крысы из обеих групп показали значительно более быстрое восстановление по сравнению с крысами из контрольной группы, где не применялось магнитное поле. В случае поля в 15.72 Гц восстановление достигло своего предела спустя 60 дней наблюдений, но в случае 26 Гц восстановление продолжалось (график ниже).
Изображение №5
Дополнительно был проведен такой же эксперимент на крысах с инсультом. В этом случае лучшие результаты по восстановлению показали частоты 0.5 х 7.8 Гц и 2 х 7.8 Гц.
Вышеописанные эксперименты являются важным историческим опытом для постановки современных экспериментов, учитывающих все накопленные знания в данной области.
Авторы рассматриваемого нами сегодня исследования проанализировали влияние магнитных полей 7.8 Гц на миоциты (мышечные клетки) сердца крысы. Магнитное поле воздействовало на клетки возрастом 3-4 дня.
В течение 30–40 минут после приложения магнитного поля спонтанные сокращения прекратились, а переходные процессы по Ca + уменьшились на 80%. Самое интересное то, что магнитное поле уменьшило повреждения, вызванные стрессом, примерно на 40% по сравнению с контрольной группой.
Это может говорить о том, что внешние поля резонанса Шумана исполняют роль защитной оболочки клеток в состоянии стресса.
Для более детального ознакомления с нюансами исследования рекомендую заглянуть в доклад ученых.
Эпилог
Авторы не скрывают, что их труд можно назвать провокационным. Кому-то он покажется странным и лишенным логики, а кому-то — революционным. И тут сложно выбрать одну позицию, поскольку рассмотренные в труде аспекты науки крайне неохотно раскрывают свои секреты, от чего исследования на их основе крайне сложно судить объективно.
Тем не менее, нельзя отрицать наличие связи между внешними электромагнитными полями и работой биологических систем, то есть живых организмов.
Исследователи считают, что живые организмы, обитающие на Земле миллионы лет, эволюционировали под воздействием внешних сил, таких как резонанс Шумана. Следовательно, эти внешние силы тем или иным образом могли повлиять на сам процесс эволюции.
Основной задачей своего исследования ученые называют не только понимание взаимодействия живых организмов и окружающей среды, но и возможность усовершенствовать медицину. Конечно, нельзя безоговорочно отметить факт того, что магнитное поле, воздействующее на крысу с повреждением спинного мозга, дало положительный результат. С другой стороны, ученые не отрицают и того, что им предстоит еще очень многое изучить, чтобы полноценно контролировать силы, которые существовали на планете Земля задолго до появления человека.
Благодарю за внимание, оставайтесь любопытствующими и хорошей всем рабочей недели, ребята. 🙂
Немного рекламы 🙂
Электромагнитные волны для «чайников». Что излучает телефон?
В этой небольшой серии из трех статей, мы попробуем разобраться с очень важной темой, которая касается каждого современного человека. Ведь все мы буквально погружены в океан электромагнитного излучения, порой даже не осознавая, что это такое и как оно влияет на нас.
Безусловно, в интернете предостаточно статей, которые рассказывают об электромагнитных волнах, их длине и частоте, об ионизирующем излучении и прочих сложных терминах. Но для многих людей всё это остается загадкой — чем-то далеким от той реальности, которую можно потрогать, увидеть или хотя бы осознать.
Например, многие знают, что видимый свет — это поток фотонов или «светящихся шариков», переносящих энергию в пространстве. Но тогда радиоволны или тепло — это тоже фотоны/шарики?
Как вы представляете себе энергию? Может это некий светящийся сгусток материи или небольшая порция электричества, вроде микроскопической молнии? Но ведь брошенный камень тоже обладает энергией, а в нем нет никакого электричества или светящегося вещества.
Что происходит, когда смартфон или фитнес-браслет создает электромагнитную волну, которая затем отдает эту энергию нашему телу? Ведь все эти устройства непрерывно что-то излучают. И куда же девается эта энергия?
Цель этого небольшого цикла статей — ответить на все поставленные выше вопросы. Но ответить не цифрами или сложными терминами, а дать интуитивное понимание, чтобы электромагнитное излучение и энергия показались такими же обыденными вещами, как огонь или вода.
В процессе чтения этих статей вы непосредственно почувствуете, что значит потратить 1 джоуль энергии или сколько это 1 ватт. Ведь именно в ваттах измеряется мощность радиоизлучения от Wi-Fi, смартфонов или Bluetooth-наушников.
Но прежде, чем мы разберемся с энергией, которую излучает различная техника (во второй части), и поймем влияние этой энергии на организм (в третьей части), нужно осознать, что такое излучение вообще.
Именно о природе электромагнитных волн и пойдет речь в первой статье!
Что такое электромагнитное поле? Или о логических противоречиях
Очевидно, электромагнитные поля — это набор электрических и магнитных полей. Но при попытке ответить на вопрос о том, что же такое электромагнитное поле, из чего оно состоит и почему работает так, как работает, мы сталкиваемся с логическим противоречием.
Если вы пытались в этом разобраться, то, скорее всего, тоже каждый раз разочаровывались в ответах, потому что, задавая такие вопросы, вы нарушаете законы логики.
Из чего состоит воздух? Очевидно, из молекул. Почему воздух нагревается? Потому что молекулы находятся в непрерывном движении и если они ускоряются, то при столкновении с нашей кожей ударяются в нее сильнее, передавая часть энергии движения нашим молекулам. И мы чувствуем тепло.
Это простые вопросы и на них есть простые ответы, так как ни воздух, ни молекулы не являются фундаментальными понятиями, а значит, их природу можно объяснить.
Фундаментальное понятие — это то, из чего состоит всё остальное, то, что невозможно разложить на составляющие части, невозможно разделить, как мы делим молекулы на атомы, атомы — на электроны и ядра, а ядра — на протоны и нейтроны.
Представьте машинку, собранную из деталек конструктора. Для ребенка одна деталька и будет фундаментальным понятием. Ведь он даже не представляет, что детальку можно «разобрать» на более мелкие «детальки» — атомы.
Так вот, в современной науке, какой бы продвинутой и фантастической она ни казалась нам, электрические и магнитные поля являются фундаментальными понятиями. Поэтому ни одна статья не сможет дать вам тот ответ, на который вы рассчитываете.
Тем не менее, кое-что мы понять можем!
Что такое электрическое поле?
Всё вещество в нашей вселенной в основном состоит из трех частиц: электронов, протонов и нейтронов. Это и есть «неделимые» детальки конструктора. А раз неделимые, значит, элементарные.
Из этих трех частиц только две (электроны и протоны) обладают неким интересным свойством под названием электрический заряд. Например, у частиц есть какая-то масса, «размер» и другие параметры, включая тот самый «заряд».
Если вы при слове «заряд» подумали об электрическом токе, то снова сделали логическую ошибку. Ток — это движение зарядов в пространстве. Соответственно, называя заряд током, мы ходим по кругу: заряд — это ток, а ток — это заряд. Нонсенс.
Дело в том, что электрон и протон не просто так парят в пространстве, они изменяют его! Эти частицы создают вокруг себя некую форму материи, которую мы и назвали электрическим полем.
Его невозможно потрогать, невозможно увидеть, но все частицы, обладающие зарядом, испытывают его влияние на себе.
Электрический заряд — это и есть способность частицы создавать вокруг себя материю под названием «электрическое поле», а также способность реагировать на электрические поля, созданные другими частицами.
Если мы представим протоны и электроны как шарики, то электрическим полем будут линии, выходящие из этих шариков (или входящих в них). Это непростые линии, они могут толкать или притягивать другие частички, обладающие зарядом:
Эти линии никогда не пересекаются. Если поместить рядом два протона, из которых исходят линии (электрическое поле), то линии согнутся и будут пытаться выпрямиться, словно прутья. В результате две частички отлетят друг от друга:
Но если мы поместим протон, из которого выходят линии, и электрон, в который линии входят, они «склеятся» друг с другом:
Когда люди заметили подобное поведение, то решили как-то обозвать два типа таких зарядов. Можно было называть их исходящими и входящими зарядами или липкими и колючими. Но Бенджамин Франклин (тот, что изображен на стодолларовой купюре) назвал их положительными и отрицательными зарядами.
Итак, электрическое поле — это некая таинственная материя, которую создают вокруг себя все частицы, обладающие таким свойством, как электрический заряд.
Конечно, в реальности электрическое поле не состоит из физических линий, но именно так проще всего представлять эту материю. К примеру, вокруг частиц с положительным электрическим зарядом линии направлены от частицы и это направление показывает, в какую сторону будут отталкиваться другие положительные заряды:
Чем ближе к протону — тем больше линий, то есть, выше плотность их размещения и, соответственно, электрическое поле будет более сильным. Чем дальше от протона — тем реже встречаются линии, и тем слабее поле, то есть, оно толкает другие заряды с меньшей силой. Это даже интуитивно понятно, так как один согнутый «прутик» толкнет частичку гораздо слабее, чем сотня таких же натянутых «прутьев», сделанных из неизвестной науке материи.
Важно понимать, что «прутики» не толкают непосредственно частички, они на них вообще никак не влияют. Эти «прутики» взаимодействуют только с другими «прутьями» или линиями электрических полей, созданных другими заряженными частицами.
Поэтому, если у частицы нет заряда (например, у нейтрона), тогда она никак не будет реагировать на электрические поля в пространстве и сама не будет создавать вокруг себя этой материи.
Из какого именно вещества состоит электрическое поле и как оно выглядит — это бессмысленные вопросы. Поле не может состоять из вещества по определению. Ведь наша вселенная состоит из материи, которая в свою очередь делится на вещество и поле:
Поэтому не нужно думать об электрическом поле, как о каком-то веществе, вроде электронов, атомов или жидкости. Это отдельная форма существования материи. Если в веществе может быть пустота (вакуум), то в поле не может быть пустот, так как поле не состоит из отдельных частиц.
Представьте, что всё пространство во вселенной, включая вакуум, заполнено какой-то неизвестно науке средой. Это не электрическое поле, а просто что-то, что заполняет всё вокруг. В таком случае элементарная частица, обладающая электрическим зарядом, будет деформировать эту среду. И вот эта деформация/изменение пространства и есть электрическое поле.
Что такое магнитное поле?
Раз элементарные частицы, обладающие электрическим зарядом, создают вокруг себя электрическое поле, то, должно быть, существуют элементарные частицы, обладающие магнитным зарядом и вот они-то и создают вокруг себя магнитное поле?
Хотя в этом и есть логика, но это не так. Не существует такого свойства частиц, как «магнитный заряд» и ни одна частица не обладает магнитным полем. Откуда же оно берется?
Прежде всего, магнитное поле — это еще один реально существующий вид материи, который может появляться из «ниоткуда» и исчезать в «никуда». Это примерно такое же изменение пространства, как и электрическое поле, но с небольшими отличиями.
Возьмем, к примеру, электрон. Это частица, имеющая электрический заряд. А раз так, она всегда создает вокруг себя электрическое поле и больше ничего. Но стоит электрону сдвинуться с места, то есть, начать движение и вокруг этого электрона, помимо постоянного электрического поля, тут же начнет появляться магнитное поле:
Как только электрон остановится, магнитное поле исчезнет. В отличие от электрического поля, магнитное поле не исходит от частицы, а окружает ее. Также линии магнитного поля замкнуты, а не направлены во все стороны (действие их силы показано стрелкой на картинке выше).
Когда электрон или другая заряженная частица пролетает, магнитное поле не исчезает мгновенно, а как бы тянется небольшим шлейфом впереди и позади электрона, причем поле тем сильнее, чем ближе оно к частице:
Если электрическое поле с силой действует на частицы с электрическим зарядом, то магнитное поле действует на эти же частицы, если они находятся в движении.
К примеру, мы можем взять два провода и пустить по ним ток, чтобы внутри по проводам поползли элементарные заряженные частицы (электроны). Как только они начнут свое движение, вокруг проводов появятся магнитные поля. То есть, два провода в буквальном смысле слова станут двумя магнитами.
Если электроны в двух проводах будут ползти в одну сторону, магнитные поля будут притягивать друг друга, словно вы прикладываете два магнита разными полюсами. Если же ток в двух проводах будет течь в разные стороны, «провода-магниты» будут отталкиваться:
Заметьте, что электрические поля электронов не имеют никакого отношения к этому отталкиванию или притяжению. Это проявляются магнитные поля.
Что заставляет электроны ползти по проводам? Верно — электрическое поле! Так как на одном конце провода собралось очень много отрицательно заряженных частичек, а на втором — положительно заряженных, то именно электрическое поле и притягивает отрицательные заряды (электроны) к положительным, заставляя их ползти по проводу:
Это и есть электромагнитные поля.
Но причем здесь излучение? Ведь электрическое и магнитное поле существуют только вокруг частичек, не так ли?
Что такое электромагнитное излучение? Или о том, как работает телефон
Снова наша логика подсказывает очень простой ответ. Если электромагнитное поле существует только вокруг элементарных частиц с зарядом (электронов и протонов), то электромагнитное излучение — это, наверное, полет электронов или протонов.
Наверное, во время звонка смартфон выбрасывает в пространство припасенные в аккумуляторе электроны, которые затем разлетаются во все стороны и создают при полете вокруг себя электромагнитные поля. Верно?
Может это звучит и логично, но в корне ошибочно. Всё куда интереснее и сложнее.
Дело в том, что наша вселенная устроена так, что изменяющееся электрическое поле порождает изменяющееся магнитное поле, а изменяющееся магнитное поле порождает изменяющееся электрическое поле.
Чтобы понять этот набор слов, давайте рассмотрим простой пример.
Вернемся к проводу, на одном конце которого собралось много положительно заряженных частиц, а на другом — с отрицательным зарядом. Так как линии электрического поля всегда выходят из положительных зарядов и входят в отрицательные, то наше электрическое поле упрощенно выглядит так:
Естественно, такое поле оказывает влияние на все электроны в проводе и заставляет их двигаться по направлению к положительно заряженным частицам. Но когда все отрицательные частицы переходят вниз, то теперь внизу собрался отрицательный заряд, а вверху — положительный. И теперь электрическое поле изменило свое направление и выглядит так:
Это и есть изменяющееся электрическое поле. Оно постоянно меняет свое направление (направление силовых линий) и силу.
Ну а что с магнитным полем?
Когда электрическое поле заставляет двигаться заряженные частички, вокруг этого движения возникает магнитное поле. Причем, когда все электроны находятся на одном из концов провода, магнитное поле исчезает, ведь движение электронов останавливается. А когда электроны начинают двигаться в противоположную сторону, магнитное поле снова увеличивается до максимума:
Так как направление движения электронов каждый раз меняется, то меняется не только сила магнитного поля, связанная с движением электронов, но и направление его линий:
Это и есть изменяющееся во времени магнитное поле!
Получается, у нас есть изменяющееся электрическое поле, которое порождает изменяющееся магнитное поле. А как мы помним, изменяющееся магнитное поле снова порождает изменяющееся электрическое поле. И тут происходит настоящая цепная реакция, словно падение костяшек домино:
Даже если в этот момент убрать провод и любые частицы, это уже не остановит волну порождений одного поля другим. Такая волна будет нестись в пространстве со скоростью света, по пути влияя на все остальные заряженные частицы.
К слову, именно это изменение электрического поля и показывают на графиках в виде волн:
Когда электроны начинают движение и собираются на одном конце провода, электрическое поле на графике направляется вверх и его сила увеличивается. Затем электроны начинают двигаться в обратном направлении и сила электрического поля на графике начинает снижаться до тех пор, пока электроны не соберутся на противоположной стороне провода.
Теперь график снова показывает максимальную силу электрического поля, но уже направленную в другую сторону:
Иногда график рисуется более корректно, так как к нему добавляется еще магнитное поле, которое колеблется перпендикулярно относительно электрического поля:
Итак, мы видим, что электромагнитная волна не связана с полетом электронов или протонов. При помощи электронов мы лишь создаем в одной точке пространства изменяющееся электрическое поле и оно порождает цепную реакцию под названием электромагнитное излучение.
Никакое вещество не переносится в пространстве, идет просто возмущение/колебание пространства или условной среды, заполняющей всё пространство.
Именно это делают смартфоны, Bluetooth-наушники или фитнес-браслеты. Внутри этих устройств есть антенны — небольшие кусочки провода, по которым электроны бегают то в одну сторону, то в другую. Из-за этого создается переменное электрическое поле, которое создает переменное магнитное поле и запускается уже рассмотренная нами реакция.
А теперь представьте, что такая волна доходит до другого устройства. Кусок провода (антенна) внутри него начинает испытывать воздействие электрического поля. Вначале оно имеет максимальную силу и направлено вниз. Естественно, все электроны испытывают на себе это влияние и под действием силы начинают двигаться в одну сторону.
Затем электрическое поле угасает и движение останавливается, после чего разворачивается в другую сторону и все электроны снова начинают движение в противоположную сторону. А движение электронов — это ток. В итоге, в проводе возникает электричество или сигнал!
Для провода и электронов нет разницы, подключили ли мы батарейку (источник электрического поля) или это электрическое поле пришло в виде волны, главное, что все электроны начинают испытывать на себе движущую силу.
Именно так мы и можем передавать энергию на расстоянии, просто посылая колебания электрического поля.
У электромагнитной волны есть несколько свойств. Например, скорость распространения волны составляет 300 тыс. километров в секунду (в вакууме). Длина волны — это расстояние между ее последовательными пиками:
То есть, это время, за которое электрическое поле меняет свое направление.
Также у волны есть частота, которая говорит нам о том, как часто сменяется направление движения электронов в проводе (или направление электрического поля).
Если направление электрического поля меняется 50 раз в секунду, значит, мы имеем электромагнитную волну с частотой 50 Гц, а если направление тока меняется 2.4 миллиарда раз в секунду, электромагнитная волна имеет частоту 2.4 ГГц. Именно на такой частоте работает Bluetooth, Wi-Fi и микроволновка.
И именно от частоты зависит энергия волны. Одни волны могут буквально разрушать всё на своем пути, включая ДНК человека. Другие волны могут растягивать молекулы, а третьи — поворачивать их внутри нашего тела.
Но что такое энергия? Почему энергия зависит от длины волны (от того расстояния, которое нужно преодолеть электронам в антенне)? Откуда берется эта энергия и куда девается? Обо всем этом мы поговорим во второй части.
Алексей, глав. ред. Deep-Review
P.S. Не забудьте подписаться в Telegram на первый научно-популярный сайт о мобильных технологиях — Deep-Review, чтобы не пропустить очень интересные материалы, которые мы сейчас готовим!
Как бы вы оценили эту статью?
Нажмите на звездочку для оценки
Внизу страницы есть комментарии.
Напишите свое мнение там, чтобы его увидели все читатели!
Если Вы хотите только поставить оценку, укажите, что именно не так?
Фильтр синего света на Android-смартфонах. Разоблачение популярного мифа
Что такое PDAF и Dual Pixel? Или как работает автофокус на смартфонах
Камера смартфона для «чайников» №3. Погружаемся в матрицу!
Почему болят глаза от смартфона с AMOLED-экраном или что такое ШИМ и DC Dimming?
TWS-наушники для «чайников». Чем они отличаются и какие лучше выбрать?
Что убьет ваши глаза быстрее — электронная книга или смартфон? Правда о вреде чтения с экрана
Биоимпедансный анализ для «чайников». Как смарт-часы и весы научились определять состав тела?
HDR для «чайников». Что такое HDR10, HDR10+ и Dolby Vision на смартфонах
Шикарная статья! Автор лучший! Я из-за твоих статей злез со всех ресурсов.) Только тут сижу теперь. Ты один своими статьями тащишь на порядок мощнее чем ресурсы с десятком авторов.
Успехов тебе. Огромных успехов!
Спасибо большое, Иван! Очень рад, что Вам здесь нравится.
Но тогда радиоволны или тепло — это тоже фотоны/шарики?
Не увидел ответа на этот вопрос, но вообще, да — все электромагнитные волны распространяются посредством фотонов. Электроны антенн радиопередатчиков излучают фотоны определённой энергии, а электроны антенн радиоприёмников поглощают эти фотоны и начинают из-за этого движение, которое в итоге и приводит к возникновению тока.
Если бы человеческий глаз умел видеть в радиодиапазоне, то радиовышки мы бы воспринимали как очень яркие прожекторы, которые видно за десятки километров.
Хорошая статья! А где можно прочитать вторую часть?
Кажется, автор начал слишком издалека. Для большинства пользователей смартфонов это не нужно. А те, кто не прогуливал уроки физики в школе и так это знают.
К сожалению, не могу с Вами согласиться. Буквально на днях увидел в интернете забавный вопрос, корни которого растут как раз из того, что школьные уроки физики были неинтересны, а статьи в интернете начинаются не слишком издалека.
Так вот, человека интересовало, можно ли вывести из организма электромагнитное излучение, полученное от гаджетов…
В понимании этого человека, электромагнитное излучение является неким веществом, которое попадает в организм и находится там, пока его оттуда не выведешь. Вот для таких людей мы и начинаем обычно издалека.
Разумеется, уровень образования у каждого разный и то, что Вам кажется банальным и очевидным, для других становится настоящим откровением.
Спасибо огромное за статью. Физику изучаю в течении всей жизни и каждый раз пытаюсь погрузиться чуть глубже в понимание процессов, но все равно всегда остаются непонятные мне вещи.
Что подразумевается под концами проводов, ведь для движения частиц система должна быть замкнута?
В институте мне говорили, что при отключении провода от источника питания частицы никуда не деваются,а просто останавливают движение,
а из статьи можно сделать вывод, что они пропадают из провода, оказываясь на его концах
Что подразумевается под концами проводов, ведь для движения частиц система должна быть замкнута?
Нет, это совсем не обязательно. Для движения частиц нужна только сила, которая будет их толкать, а замкнут ли провод или разомкнут — не суть важно. Главное — где-то взять электрическое поле.
Для этого можно воспользоваться батарейкой — специальным устройством с электрическим полем. У батарейки на одном конце положительный заряд, а на другом — отрицательный. Если соединить эти два конца проводом, то все электроны ощутят на себе силу электрического поля и поплывут от отрицательного конца к положительному и будет ток.
Но в случае с электромагнитной волной, сам провод непосредственно «погружается» в электрическое поле. Когда волна «смотрит» вверх, все электроны внутри провода ощущают на себе силу, которая толкает их вниз. Затем волна проходит, электрическое поле исчезает и электроны останавливаются.
при отключении провода от источника питания частицы никуда не деваются, а просто останавливают движение
Безусловно, так и есть. Если быть более точным, то электроны никогда не останавливаются, они находятся в непрерывном движении внутри провода, так как там есть локальные электрические поля, создаваемые атомами и другими электронами. Просто электроны движутся хаотично во всех направлениях. А ток — это движение всех электронов в одном направлении.
из статьи можно сделать вывод, что они пропадают из провода, оказываясь на его концах
Смотрите, когда в определенный момент времени электрическое поле достигает максимума, электроны оказываются на одном из концов провода (того провода, который оказался «погруженным» в электрическое поле и который испытывает на себе его силу).
Это совершенно неестественное поведение для электронов. Они не могут собираться вместе, так как все они — отрицательно заряженные частицы. А одноименные заряды всегда отталкиваются. И именно электрическое поле силой удерживает их на одном из концов провода.
Но как только электрическое поле начнет ослабевать (а это волна, которая приходит и уходит), его силы будет уже недостаточно для того, чтобы удерживать все электроны в одном месте. Поэтому какие-то электроны начнут отлетать от конца провода. И чем слабее будет становиться поле, тем больше электронов будет отталкиваться друг от друга и занимать более свободное пространство внутри провода, где нет переизбытка одноименных зарядов.
К тому моменту, когда электрическое поле полностью исчезнет, все электроны уже будут равномерно распределены по проводу.
Именно это я пытался наглядно показать на рисунке, где схематически отображается электрическая волна, а под ней — то, что происходит в проводе. Обратите внимание, что когда волна спадает до нуля (на горизонтальной линии), электроны равномерно распределены по проводу.