работа с нейронами мозга
Работа с нейронами мозга
Мария Рамзаева
Внештатный автор Slon
Краткий пересказ книги Джона Ардена
«Укрощение амигдалы и другие
инструменты тренировки мозга»
(М.: Манн, Иванов и Фербер, 2016).
Его книга «Укрощение амигдалы и другие инструменты тренировки мозга» основана на последних достижениях нейрофизиологии и доказательной медицины. В книге Арден дает практические советы по перепрограммированию своего мозга и подробно объясняет, как именно влияет на мозг и организм в целом та или иная привычка.
Перенастройка мозга
Еще не так давно считалось, что головной мозг от рождения до смерти человека не изменяется и новые нейроны в нем не образуются. Ученые полагали, что привычки, вкусы, а также способности определяются исключительно генетическим кодом и являются врожденными. Однако за последние 20 лет было получено множество доказательств того, что мозг обладает возможностью к нейрогенезу (формированию новых нейронов) и нейропластичностью (возможностью изменяться под действием опыта).
На практике это означает, что, пусть генетический набор и задает потенциально сильные и слабые стороны человека, именно полученный внешний опыт играет главную роль в том, как человек реализует свои способности.
Нейропластичность можно коротко описать как «используй, или потеряешь». Чем чаще вы что-то делаете, тем прочнее становится связь между нейронами, отвечающими за это действие, а значит, тем выше вероятность удачно сделать действие в дальнейшем (увеличивается вероятность активации нейронов в будущем) и тем легче вам дается действие.
Благодаря свойству нейропластичности возможно сформировать полезные привычки и избавиться от вредных, а также улучшить работу своего мозга и качество и продолжительность жизни в целом.
Чтобы запустить перепрограммирование мозга, необходимы следующие шаги:
1. Концентрация нужна для запуска процесса нейропластичности. Когда вы фокусируетесь на новой информации или новом действии, то как бы сигнализируете мозгу: это важно, на них надо обратить внимание и запомнить.
2. Усилие необходимо для формирования новых нейронных связей.
3. Расслабленность появляется, когда действие входит в привычку.
4. Стремление необходимо, чтобы не бросить заниматься чем-то новым. Нужна постоянная практика, так как очень быстро после прекращения регулярного действия оно забывается.
Пройдя эти четыре шага, вы вырабатываете новые нейронные связи, то есть создаете какую-то новую привычку. Например, если вы хотите избавиться от вспышек гнева, для начала вам нужно начать концентрироваться на моментах появления гнева, затем делать усилие, чтобы воздержаться от его проявления. Спустя какое-то время контролировать себя будет все легче и легче (расслабленность), но и тогда обязательно нужно будет продолжать контролировать (стремление), чтобы появившиеся нейронные связи не исчезли.
Используя эту методику, считает автор, можно, в том числе избавляться от иррациональных страхов, тревоги и негативных мыслей.
Укрощение эмоций
Как правило, испытывая страх, человек склонен к четырем основным типам поведения, которые дают временное успокоение, но в конечном итоге могут приводить к еще большему стрессу.
4. Таким образом, люди делают все, чтобы не встречаться с объектом своего страха, и, как ни парадоксально, тем самым лишь усиливают свой страх.
Справиться с тревогой возможно, только регулярно попадая в ситуацию контролируемого стресса. Чувствительность миндалевидного тела, отвечающего за ощущение тревоги, притупляется всякий раз, когда при столкновении с объектом страха не происходит ничего ужасного и оказывается, что это была ложная тревога. К тому же, когда человек предпринимает какие-то конструктивные действия, уровень стресса и беспокойства понижается, так как запускается блокирующая функция миндалевидного тела и активизируется левая лобная доля, снижающая его активность. Более того, когда человек подключает мыслительный процесс (например, говорит себе: «Надо же, я смог отлично выступить на публике»), «укрощение» страха происходит еще быстрее.
Доказано, что чем дольше человек находится в том или ином эмоциональном состоянии, тем больше он склонен в нем оставаться, так как тем больше вероятность, что нейроны, активизирующиеся при испытывании эмоций, образуют устойчивую связь, и тем самым создастся базовый эмоциональный фон жизни. То есть чем дольше человек пребывает в унынии, тем больше вероятность, что подавленное настроение станет для него настроением «по умолчанию».
Сложность заключается в том, что плохое настроение может возникать спонтанно и поглощает человека: когда нейронные связи активизируются, они захватывают другие нейроны, что только поддерживает уныние. Из такого состояния нельзя выйти просто так, но можно себя вывести с помощью определенных техник:
1. Стимулирование позитивного настроения. Когда вам весело, вы улыбаетесь, но для мозга это работает и в обратную сторону: если вы улыбаетесь, в мозгу активизируются области, вызывающие чувство счастья.
2. Активность. Как говорилось выше, действия активизируют левые лобные доли, отвечающие за позитивные эмоции.
3. Пребывание на свету. Темные помещения вызывают производство гормона сна, который, в свою очередь, понижает уровень серотонина.
4. Юмор. Доказано, что смех и легкое, ироничное отношение к себе понижает количество гормона стресса кортизола.
Позитивное восприятие жизни не только улучшает ее качество, но и является главным фактором стрессоустойчивости. Оптимист во всем старается искать возможности для развития, а ошибки и трудности видит как еще один этап работы, а не катастрофу, и это также позволяет снижать уровень стресса.
Однако основой для продуктивной работы мозга и всего организма, а также главным способом улучшить настроение и стрессоустойчивость являются здоровые базовые привычки.
Сон, еда и объятия для помощи мозгу
При малейшем недомогании люди склонны пить таблетки, но в реальности для того, чтобы помочь мозгу и телу работать оптимально, необходимы самые базовые вещи, от которых мы постоянно отмахиваемся: «Мне и так плохо, чтобы еще начать правильно питаться» или «Я и так ничего не успеваю, чтобы еще так много спать». Однако без определенных «базовых» правил не только все таблетки будут малоэффективны, но и совершенно невозможна продуктивная работа.
Как и правильное питание, физические упражнения крайне важны для продуктивной работы мозга. Они запускают процессы нейрогенеза и нейропластичности, снижают уровень стресса и, согласно многочисленным исследованиям, являются эффективными антидепрессантами.
Причем полезно даже думать о физических упражнениях, поскольку от этого в головном мозге активизируются те же самые нейронные системы, что приводит к улучшению фактического выполнения этих упражнений.
Согласно статистике, примерно половина людей испытывают сложности со сном хотя бы раз в неделю, а для многих это постоянная проблема. Однако зачастую люди прибегают к неэффективным и даже вредным методам борьбы с бессонницей. Например, пытаются разгрузить мозг за компьютером, что только вредит засыпанию, так как мозг воспринимает излучение монитора за дневной свет и ведет себя так, будто наступил день. Не помогает высыпаться и алкоголь, поскольку приводит к неглубокому и прерывистому сну. Конечно, существует огромное количество всевозможных снотворных, но они зачастую подавляют важные стадии сна, нередко вызывают привыкание и в итоге ведут к обратному эффекту.
Таким образом, заключает автор, внедряя, указанные выше полезные привычки, возможно значительно улучшить работу мозга и даже продлить молодость.
Как работает наш мозг или как смоделировать душу?
Здравствуй, Geektimes! В ранее опубликованной статье, была представлена модель нервной системы, опишу теорию и принципы, которые легли в её основу.
Теория основана на анализе имеющейся информации о биологическом нейроне и нервной системе из современной нейробиологии и физиологии мозга.
Сначала приведу краткую информацию об объекте моделирования, вся информация изложена далее, учтена и использована в модели.
НЕЙРОН
Нейрон является основным функциональным элементом нервной системы, он состоит из тела нервной клетки и её отростков. Существуют два вида отростков: аксоны и дендриты. Аксон – длинный покрытый миелиновой оболочкой отросток, предназначенный для передачи нервного импульса на далекие расстояния. Дендрит – короткий, ветвящийся отросток, благодаря которым происходит взаимосвязь с множеством соседних клеток.
ТРИ ТИПА НЕЙРОНОВ
Нейроны могут сильно отличаться по форме, размерам и конфигурации, не смотря на это, отмечается принципиальное сходство нервной ткани в различных участках нервной системе, отсутствуют и серьезные эволюционные различия. Нервная клетка моллюска Аплизии может выделять такие же нейромедиаторы и белки, что и клетка человека.
В зависимости от конфигурации выделяют три типа нейронов:
а) рецепторные, центростремительные, или афферентные нейроны, данные нейроны имеют центростремительный аксон, на конце которого имеются рецепторы, рецепторные или афферентные окончания. Эти нейроны можно определить, как элементы, передающие внешние сигналы в систему.
б) интернейроны (вставочные, контактные, или промежуточные) нейроны, не имеющие длинных отростков, но имеющие только дендриты. Таких нейронов в человеческом мозгу больше чем остальных. Данный вид нейронов является основным элементом рефлекторной дуги.
в) моторные, центробежные, или эфферентные, они имеют центростремительный аксон, который имеет эфферентные окончания передающий возбуждение мышечным или железистым клеткам. Эфферентные нейроны служат для передачи сигналов из нервной среды во внешнюю среду.
Обычно в статьях по искусственным нейронным сетям оговаривается наличие только моторных нейронов (с центробежным аксоном), которые связаны в слои иерархической структуры. Подобное описание применимо к биологической нервной системе, но является своего рода частным случаем, речь идет о структурах, базовых условных рефлексов. Чем выше в эволюционном значении нервная система, тем меньше в ней превалируют структуры типа «слои» или строгая иерархия.
ПЕРЕДАЧА НЕРВНОГО ВОЗБУЖДЕНИЯ
Передача возбуждения происходит от нейрона к нейрону, через специальные утолщения на концах дендритов, называемых синапсами. По типу передачи синапсы разделяют на два вида: химические и электрические. Электрические синапсы передают нервный импульс непосредственно через место контакта. Таких синапсов в нервных системах очень мало, в моделях не будут учитываться. Химические синапсы передают нервный импульс посредством специального вещества медиатора (нейромедиатора, нейротрансмиттера), данный вид синапса широко распространен и подразумевает вариативность в работе.
Важно отметить, что в биологическом нейроне постоянно происходят изменения, отращиваются новые дендриты и синапсы, возможны миграции нейронов. В местах контактов с другими нейронами образуются новообразования, для передающего нейрона — это синапс, для принимающего — это постсинаптическая мембрана, снабжаемая специальными рецепторами, реагирующими на медиатор, то есть можно говорить, что мембрана нейрона — это приемник, а синапсы на дендритах — это передатчики сигнала.
СИНАПС
При активации синапса он выбрасывает порции медиатора, эти порции могут варьироваться, чем больше выделится медиатора, тем вероятнее, что принимаемая сигнал нервная клетка будет активирована. Медиатор, преодолевая синоптическую щель, попадает на постсинаптическую мембрану, на которой расположены рецепторы, реагирующие на медиатор. Далее медиатор может быть разрушен специальным разрушающим ферментом, либо поглощен обратно синапсом, это происходит для сокращения времени действия медиатора на рецепторы.
Так же помимо побудительного воздействия существуют синапсы, оказывающие тормозящее воздействие на нейрон. Обычно такие синапсы принадлежат определенным нейронам, которые обозначаются, как тормозящие нейроны.
Синапсов связывающих нейрон с одной и той же целевой клеткой, может быть множество. Для упрощения примем, всю совокупность, оказываемого воздействия одним нейроном, на другой целевой нейрон за синапс с определённой силой воздействия. Главной характеристикой синапса будет, является его сила.
СОСТОЯНИЕ ВОЗБУЖДЕНИЯ НЕЙРОНА
В состоянии покоя мембрана нейрона поляризована. Это означает, что по обе стороны мембраны располагаются частицы, несущие противоположные заряды. В состоянии покоя наружная поверхность мембраны заряжена положительно, внутренняя – отрицательно. Основными переносчиками зарядов в организме являются ионы натрия (Na+), калия (K+) и хлора (Cl-).
Разница между зарядами поверхности мембраны и внутри тела клетки составляет мембранный потенциал. Медиатор вызывает нарушения поляризации – деполяризацию. Положительные ионы снаружи мембраны устремляются через открытые каналы в тело клетки, меняя соотношение зарядов между поверхностью мембраны и телом клетки.
Изменение мембранного потенциала при возбуждении нейрона
Характер изменений мембранного потенциала при активации нервной ткани неизменен. Независимо от того кокой силы воздействия оказывается на нейрон, если сила превышает некоторое пороговое значение, ответ будет одинаков.
Забегая вперед, хочу отметить, что в работе нервной системы имеет значение даже следовые потенциалы (см. график выше). Они не появляются, вследствие каких-то гармонических колебаний уравновешивающих заряды, являются строгим проявлением определённой фазы состояния нервной ткани при возбуждении.
ТЕОРИЯ ЭЛЕКТРОМАГНИТНОГО ВЗАИМОДЕЙСТВИЯ
Итак, далее приведу теоретические предположения, которые позволят нам создавать математические модели. Главная идея заключается во взаимодействии между зарядами формирующихся внутри тела клетки, во время её активности, и зарядами с поверхностей мембран других активных клеток. Данные заряды являются разноименными, в связи этим можно предположить, как будут располагаться заряды в теле клетки под воздействием зарядов других активных клеток.
Можно сказать, что нейрон чувствует активность других нейронов на расстоянии, стремится направить распространения возбуждения в направлении других активных участков.
В момент активности нейрона можно рассчитать определённую точку в пространстве, которая определялась бы, как сумма масс зарядов, расположенных на поверхностях других нейронов. Указанную точку назовем точкой паттерна, её месторождение зависит от комбинации фаз активности всех нейронов нервной системы. Паттерном в физиологии нервной системы называется уникальная комбинация активных клеток, то есть можно говорить о влиянии возбуждённых участков мозга на работу отдельного нейрона.
Нужно представлять работу нейрона не просто как вычислителя, а своего рода ретранслятор возбуждения, который выбирает направления распространения возбуждения, таким образом, формируются сложные электрические схемы. Первоначально предполагалось, что нейрон просто избирательно отключает/включает для передачи свои синапсы, в зависимости от предпочитаемого направления возбуждения. Но более детальное изучение природы нейрона, привело к выводам, что нейрон может изменять степень воздействия на целевую клетку через силу своих синапсов, что делает нейрон более гибким и вариативным вычислительным элементом нервной системы.
Какое же направление для передачи возбуждения является предпочтительным? В различных экспериментах связанных с образованием безусловных рефлексов, можно определить, что в нервной системе образуются пути или рефлекторные дуги, которые связывают активируемые участки мозга при формировании безусловных рефлексов, создаются ассоциативные связи. Значит, нейрон должен передавать возбуждения к другим активным участкам мозга, запоминать направление и использовать его в дальнейшем.
Представим вектор начало, которого находится в центре активной клети, а конец направлен в точку паттерна определённую для данного нейрона. Обозначим, как вектор предпочитаемого направления распространения возбуждения (T, trend). В биологическом нейроне вектор Т может проявляться в структуре самой нейроплазмы, возможно, это каналы для движения ионов в теле клетки, или другие изменения в структуре нейрона.
Нейрон обладает свойством памяти, он может запоминать вектор Т, направление этого вектора, может меняться и перезаписываться в зависимости от внешних факторов. Степень с которой вектор Т может подвергается изменениям, называется нейропластичность.
Этот вектор в свою очередь оказывает влияние на работу синапсов нейрона. Для каждого синапса определим вектор S начало, которого находится в центре клетки, а конец направлен в центр целевого нейрона, с которым связан синапс. Теперь степень влияния для каждого синапса можно определить следующим образом: чем меньше угол между вектором T и S, тем больше синапс будет, усиливается; чем меньше угол, тем сильнее синапс будет ослабевать и возможно может прекратить передачу возбуждения. Каждый синапс имеет независимое свойство памяти, он помнит значение своей силы. Указанные значения изменяются при каждой активизации нейрона, под влиянием вектора Т, они либо увеличиваются, либо уменьшаются на определённое значение.
МАТЕМАТИЧЕСКАЯ МОДЕЛЬ
Входные сигналы (x1, x2,…xn) нейрона представляют собой вещественные числа, которые характеризуют силу синапсов нейронов, оказывающих воздействие на нейрон.
Положительное значение входа означает побудительное воздействие, оказываемое на нейрон, а отрицательное значение – тормозящее воздействие.
Для биологического нейрона не имеет значение, откуда поступил возбуждающий его сигнал, результат его активности будет идентичен. Нейрон будет активизирован, когда сумма воздействий на него будет превышать определённое пороговое значение. Поэтому, все сигналы проходят через сумматор (а), а поскольку нейроны и нервная система работают в реальном времени, следовательно, воздействие входов должно оцениваться в короткий промежуток времени, то есть воздействие синапса имеет временный характер.
Результат сумматора проходит пороговую функцию (б), если сумма превосходит пороговое значение, то это приводит к активности нейрона.
При активации нейрон сигнализирует о своей активности системе, передовая информацию о своём положении в пространстве нервной системы и заряде, изменяемом во времени (в).
Через определённое время, после активации нейрон передает возбуждение по всем имеющимся синапсам, предварительно производя пересчет их силы. Весь период активации нейрон перестает реагировать на внешние раздражители, то есть все воздействия синапсов других нейронов игнорируются. В период активации входит так же период восстановления нейрона.
Происходит корректировка вектора Т (г) с учётом значения точки паттерна Pp и уровнем нейропластичности. Далее происходит переоценка значений всех сил синапсов в нейроне(д).
Обратите внимание, что блоки (г) и (д) выполняются параллельно с блоком (в).
ЭФФЕКТ ВОЛНЫ
Если внимательно проанализировать предложенную модель, то можно увидеть, что источник возбуждения должен оказывать большее влияние на нейрон, чем другой удалённый, активный участок мозга. Следовательно возникает вопрос: почему же все равно происходит передача в направлении другого активного участка?
Данную проблему я смог определить, только создав компьютерную модель. Решение подсказал график изменения мембранного потенциала при активности нейрона.
Усиленная реполяризация нейрона, как говорилось ранее, имеет важное значение для нервной системы, благодаря ей создается эффект волны, стремление нервного возбуждения распространятся от источника возбуждения.
При работе с моделью я наблюдал два эффекта, ели пренебречь следовым потенциалом или сделать его недостаточно большим, то возбуждение не распространяется от источников, а в большей степени стремится к локализации. Если сделать следовой потенциал сильно большим, то возбуждение стремится «разбежаться» в разные стороны, не только от своего источника, но и от других.
КОГНИТИВНАЯ КАРТА
Используя теорию электромагнитного взаимодействия, можно объяснить многие явления и сложные процессы, протекающие в нервной системе. К примеру, одним из последних открытий, которое широко обсуждается в науках о мозге, является открытие когнитивных карт в гиппокампе.
Гиппокамп – это отдел мозга, которому отвечает за кратковременную память. Эксперименты на крысах выявили, что определённому месту в лабиринте соответствует своя локализованная группа клеток в гиппокампе, причем, не имеет значение, как животное попадает в это место, все равно будет активирован соответствующий этому месту участок нервной ткани. Естественно, животное должно помнить данный лабиринт, не стоит рассчитывать на топологическое соответствие пространства лабиринта и когнитивной карты.
Каждое место в лабиринте представляется в мозге, как совокупность раздражителей различного характера: запахи, цвет стен, возможные примечательные объекты, характерные звуки и т. д. Указанные раздражители отражаются на коре, различных представительствах органов чувств, в виде всплесков активности в определённых комбинациях. Мозг одновременно обрабатывает информацию в нескольких отделах, зачастую информационные каналы разделяются, одна и та же информация поступает в различные участки мозга.
Активация нейронов места в зависимости от положения в лабиринте (активность разных нейронов показана разным цветом). источник
Гиппокамп расположен в центре мозга, вся кара и её области удалены от него, на одинаковые расстояния. Если определить для каждой уникальной комбинации раздражителей точку масс зарядов поверхностей нейронов, то можно увидеть, что указанные точки будут различны, и будут находиться примерно в центре мозга. К этим точкам будет стремиться и распространятся возбуждение в гиппокампе, формируя устойчивые участки возбуждения. Более того, поочередная смена комбинаций раздражителей, будет приводить к смещению точки паттерна. Участки когнитивной карты будут ассоциативно связываться друг с другом последовательно, что приведет к тому, что животное, помещенное в начало знакомого ей лабиринта, может вспомнить весь последующий путь.
Заключение
У многих возникнет вопрос, где в данной работе предпосылки к элементу разумности или проявления высшей интеллектуальной деятельности?
Важно отметить, что феномен человеческого поведения, есть следствие функционирования биологической структуры. Следовательно, чтобы имитировать разумное поведение, необходимо хорошо понимать принципы и особенности функционирования биологических структур. К сожалению, в науке биологии пока не представлен четкий алгоритм: как работает нейрон, как понимает, куда необходимо отращивать свои дендриты, как настроить свои синапсы, что бы в нервной системе смог сформироваться простой условный рефлекс, на подобие тех, которые демонстрировал и описывал в своих работах академик И.П. Павлов.
С другой стороны в науке об искусственном интеллекте, в восходящем (биологическом) подходе, сложилось парадоксальная ситуация, а именно: когда используемые в исследованиях модели основаны на устаревших представлениях о биологическом нейроне, консерватизм, в основе которого берётся персептрон без переосмысления его основных принципов, без обращения к биологическому первоисточнику, придумывается все более хитроумные алгоритмы и структуры, не имеющих биологических корней.
Конечно, никто не уменьшает достоинств классических нейронных сетей, которые дали множество полезных программных продуктов, но игра с ними не является путем к созданию интеллектуально действующей системы.
Более того, не редки заявления, о том, что нейрон подобен мощной вычислительной машине, приписывают свойство квантовых компьютеров. Из-за этой сверхсложности, нервной системе приписывается невозможность её повторения, ведь это соизмеримо с желанием смоделировать человеческую душу. Однако, в реальности природа идет по пути простоты и элегантности своих решений, перемещение зарядов на мембране клетки может служить, как для передачи нервного возбуждения, так и для трансляции информации о том, где происходит данная передача.
Несмотря на то, что указанная работа демонстрирует, как образуются элементарные условные рефлексы в нервной системе, она приближает к пониманию того, что такое интеллект и разумная деятельность.
Существуют еще множество аспектов работы нервной системы: механизмы торможения, принципы построения эмоций, организация безусловных рефлексов и обучение, без которых невозможно построить качественную модель нервной системы. Есть понимание, на интуитивном уровне, как работает нервная система, принципы которой возможно воплотить в моделях.
Создание первой модели помогли отработать и откорректировать представление об электромагнитном взаимодействии нейронов. Понять, как происходит формирование рефлекторных дуг, как каждый отдельный нейрон понимает, каким образом ему настроить свои синапсы для получения ассоциативных связей.
На данный момент я начал разрабатывать новую версию программы, которая позволит смоделировать многие другие аспекты работы нейрона и нервной системы.
Прошу принять активное участие в обсуждении выдвинутых здесь гипотез и предположений, так как я могу относиться к своим идеям предвзято. Ваше мнение очень важно для меня.