отделы мозга отвечающие за движение

Как все устроено: отделы мозга и за что они отвечают

Наш мозг — самый сложный, неизученный орган, который управляет всем организмом. Ученые не перестают изучать его строение, и сегодня мы рассмотрим основные функции различных мозговых структур.

Структура

Понятие конечного мозга объединяет оба полушария, при этом его также принято разделять на 4 доли — лобную, височную, теменную, затылочную.

отделы мозга отвечающие за движение. shutterstock 1509702119. отделы мозга отвечающие за движение фото. отделы мозга отвечающие за движение-shutterstock 1509702119. картинка отделы мозга отвечающие за движение. картинка shutterstock 1509702119.

Слаженная работа всех отделов направлена на работу высших психических функций — восприятия, внимания, памяти, мышления. Наша нервная система получает сигналы от органов чувств, а мозг обрабатывает их — слух, зрение, вкус, запах, чувство равновесия. Также он контролирует все жизненно важные процессы — дыхание, сердцебиение, метаболизм. Рассмотрим подробнее, где же происходит это волшебство.

Конечный мозг

Ниже приведены основные функции долей больших полушарий:

Задний мозг: мозжечок, мост

Этот отдел образуют мозжечок и варолиев мост, который находится над мозжечком и соединяет его со спинным мозгом. Здесь происходит регуляция нашего вестибулярного аппарата — это ощущение равновесия, а также координация движений. Он надежно защищен, поскольку повреждение этой зоны провоцирует шаткую, неустойчивую походку, ослабление мышц, даже тремор конечностей, в некоторых случаях — изменение почерка.

Средний

Этот отдел является частью двигательной системы и выполняет большое количество функций. Средний мозг контролирует наши движения и защитные реакции, например, в ответ на страх. Он отвечает за зрение, слух, поддерживает терморегуляцию, болевые ощущения, контролирует концентрацию внимания, биоритмы.

Промежуточный отдел

Этот отдел перерабатывает всю входящую информацию. Его основная функция — наша способность адаптироваться, приспосабливаться. Промежуточный мозг состоит из трех частей:

Продолговатый

Выполняет регуляцию систем: дыхательной, кровообращения, пищеварения. Благодаря ему у нас есть безусловные рефлексы, например, чихание, а также тонус мышц. Кроме того, там стимулируется выработка различных секретов — слюны, слез, ферментов ЖКТ.

Науке еще многое предстоит узнать об особенностях нашего самого главного органа. В наших же силах поддерживать его высокую работоспособность при помощи постоянных тренировок. Тренируйте высшие психические функции — внимание, память, мышление — на когнитивных тренажерах, чтобы работа всех отделов была продуктивной.

Источник

Отделы мозга отвечающие за движение

Интеграция разных отделов общей системы регуляции движений. Теперь попробуем объединить, насколько это возможно, все, что мы знаем об общем контроле движений. Для этого сначала проведем краткий обзор разных уровней регуляции.

а) Уровень спинного мозга. В спинном мозге заложены программы локальных движений для всех мышечных областей тела, например рефлексы отдергивания, помогающие убрать любую часть тела от источника боли. На уровне спинного мозга осуществляются также сложные ритмические движения, например движения конечностей вперед-назад, характерные для ходьбы с одновременными реципрокными движениями на противоположной стороне тела или реципрокными отношениями между задними и передними конечностями у четвероногих животных.

Все эти программы спинного мозга могут приводиться в действие вышерасположенными уровнями регуляции двигательной активности или затормаживаться, когда высшие уровни принимают контроль на себя.

отделы мозга отвечающие за движение. mozgechok 8. отделы мозга отвечающие за движение фото. отделы мозга отвечающие за движение-mozgechok 8. картинка отделы мозга отвечающие за движение. картинка mozgechok 8.Участие коры больших полушарий и мозжечка, особенно его промежуточной зоны, в регуляции произвольных движений

б) Уровень ромбовидного мозга. Ромбовидный мозг обеспечивает две важные функции в общей регуляции двигательной активности организма:

(1) поддержание тонуса осевых мышц тела для обеспечения стояния;

(2) постоянное изменение степени тонического напряжения различных мышц в ответ на информацию от вестибулярного аппарата для поддержания равновесия тела.

в) Уровень двигательной коры. Двигательная система коры обеспечивает большинство сигналов, идущих к спинному мозгу и активирующих двигательную активность. Она функционирует отчасти путем подачи последовательных и параллельных команд, которые приводят в действие различные двигательные программы спинного мозга. Двигательная кора может также изменить интенсивность различных программ или модифицировать их временные и другие характеристики. При необходимости кортикоспинальная система может действовать в обход спинальных программ, заменяя их двигательными актами более высоких уровней из мозгового ствола или коры большого мозга. Корковые программы обычно сложные; кроме того, им можно обучиться, тогда как программы спинного мозга — главным образом врожденные и, как говорят, «жестко закрепленные».

1. Сопряженные функции мозжечка. Мозжечок функционирует вместе со всеми уровнями двигательного контроля. Он тесно связан со спинным мозгом, особенно для усиления рефлекса на растяжение, поэтому когда сокращающаяся мышца сталкивается с неожиданно тяжелой нагрузкой, длительный сигнал рефлекса на растяжение, передаваемый в мозжечок и обратно к спинному мозгу, значительно усиливает эффект сопротивления нагрузке основного рефлекса на растяжение.

На уровне ствола мозга функция мозжечка обеспечивает плавность и непрерывность постуральных движений тела (без патологических колебаний), особенно быстрых движений, необходимых для поддержания равновесия.

На уровне коры большого мозга мозжечок действует в связи с корой, обеспечивая много вспомогательных двигательных функций, особенно придавая дополнительную двигательную силу для быстрого включения мышечного сокращения в начале движения. Ближе к окончанию каждого движения мозжечок включает мышцы-антагонисты в точно определенный момент и с соответствующей силой, чтобы остановить движение в запланированной точке. Более того, есть достоверные физиологические данные о том, что все аспекты этого функционирования мозжечка по принципу включение-выключение могут совершенствоваться в процессе жизненного опыта.

Мозжечок функционирует совместно с корой больших полушарий еще на одном уровне моторного контроля: он помогает программировать заранее мышечные сокращения, которые требуются для плавного перехода от текущего быстрого движения в одном направлении к следующему быстрому движению в другом направлении, причем все это осуществляется в течение доли секунды. Нервный контур для этого проходит от коры большого мозга к большим латеральным зонам полушарий мозжечка и затем назад — к коре большого мозга.

Мозжечок функционирует, когда мышечные движения должны осуществляться быстро. Без мозжечка медленные и сознательные движения могут еще происходить, но кортикоспинальной системе трудно доводить до конца быстрые, меняющиеся движения, предназначенные для достижения особой цели, или гладко переходить от одного быстрого движения к следующему.

отделы мозга отвечающие за движение. mozgechok 10. отделы мозга отвечающие за движение фото. отделы мозга отвечающие за движение-mozgechok 10. картинка отделы мозга отвечающие за движение. картинка mozgechok 10.Связь контура базальных ганглиев с кортикоспиномозжечковой системой для регуляции двигательной активности отделы мозга отвечающие за движение. mozgechok 11. отделы мозга отвечающие за движение фото. отделы мозга отвечающие за движение-mozgechok 11. картинка отделы мозга отвечающие за движение. картинка mozgechok 11.Контур скорлупы системы базальных ганглиев для подсознательного выполнения программ приобретенных движений

2. Сопряженные функции базальных ганглиев. Базальные ганглии участвуют в регуляции движений совершенно иным путем, чем мозжечок. Их наиболее важными функциями являются: (1) помощь коре в выполнении подсознательных, но приобретенных двигательных программу (2) содействие планированию множественных параллельных и последовательных программ движения, которые разум должен собрать вместе для достижения намеченной цели.

К двигательным программам, требующим участия базальных ганглиев, относят, например, программы для написания различных букв, бросания мяча и печатания на пишущей машинке. Базальные ганглии также нужны для модификации этих программ, чтобы писать буквы мелко или очень крупно, т.е. регулировать амплитуду движений при выполнении двигательной программы.

отделы мозга отвечающие за движение. mozgechok 12. отделы мозга отвечающие за движение фото. отделы мозга отвечающие за движение-mozgechok 12. картинка отделы мозга отвечающие за движение. картинка mozgechok 12.Контур хвостатого ядра системы базальных ганглиев для когнитивного планирования последовательных и параллельных двигательных программ для достижения специфических осознанных целей

г) Что побуждает нас действовать? Что заставляет нас переходить от состояния покоя к активным действиям? Мы только начинаем изучать мотивационные системы мозга. По существу, мозг имеет более старое ядро, расположенное ниже, впереди и латеральнее таламуса, включающее гипоталамус, миндалевидное тело, гиппокамп, область перегородки впереди гипоталамуса и таламуса и даже старые регионы самого таламуса и коры большого мозга. Действуя совместно, эти отделы инициируют большинство моторных и других функциональных активностей мозга. Совокупность этих структур называют лимбической системой мозга. Мы подробно обсудим эту систему в отдельной статье на сайте (просим вас пользоваться формой поиска выше).

Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021

— Вернуться в оглавление раздела «Физиология человека.»

Источник

Отделы мозга отвечающие за движение

а) Первичная моторная кора. Первичная моторная кора (поле 4) — полоска агранулярной коры в прецентральной извилине. Она дает начало 60-80% (количество варьирует) волокон корково-спинномозгового пути (КСП). Остальная часть волокон отходит от премоторной, поясной и добавочной моторной зон, а также теменной коры, что показано в отдельной статье на сайте. Наибольшую плотность окончаний КСП в спинном мозге наблюдают в зонах, иннервирующих дистальные мышцы конечностей.

Части тела противоположной стороны соматотопически представлены в коре инвертированными, за исключением лица, а относительно крупные области занимают кисть (играет важную роль в контроле движений пальцев), околоротовая область и язык. Зону кисти обычно можно определить по направленному кзади возвышению в 6-7 см от верхнего края полушария.

Ипсилатералъные части тела также имеют соматотопическую организацию; ипсилатеральные моторные нейроны составляют лишь 10% волокон пирамидного пути, которые не переходят на противоположную сторону и не иннервируют дистальные мышцы конечностей.

При целенаправленной стимуляции моторной коры человека установлено, что клеточные колонны регулируют направление движения. Первичная моторная кора «синтезирует» двигательные команды, но не является местом их возникновения. От нее волокна в составе КСП направляются в спинной мозг и широко разветвляются по мере достижения места своего окончания. Для того чтобы взять, например, ручку в руку, требуется:
(а) умеренное сокращение мышцы, противопоставляющей большой палец, как основной движущей мышцы;
(б) сокращение с той же интенсивностью отдела глубокого сгибателя пальцев, от которого отходит сухожилие к дистальной фаланге указательного пальца;
(в) более слабое сокращение мышцы, приводящей большой палец, и
(г) короткого сгибателя большого пальца.

Удержание всей руки при любом типе манипуляций — функция премоторной коры, отражающая важность бессознательной регуляции положения тела при совершении произвольных движений. Более крупные моторные зоны коры формируются при «объединении» близлежащих нейронных колонн на основе их функций и создании сложных последовательностей движений.

1. Пластичность моторной коры. Некрупные поражения моторной коры у обезьян и низших млекопитающих приводят первоначально к параличу соответствующей части тела, а затем в течение нескольких дней (иногда часов) — к быстро прогрессирующему восстановлению функции. Восстановление может быть обусловлено изменением свойств клеточных колонн, расположенных рядом с местом поражения, которые берут на себя утраченную двигательную функцию. Увеличение двигательной зоны участка коры возможно путем локального введения антагонистов ГАМК в кору. Расширение моторной зоны на уровне спинного мозга заранее обеспечено обширными зонами перекрытия от поля 4 до колонок двигательных нейронов серого вещества переднего рога, однако степень пластичности здесь ниже, чем в коре.

Взаимосвязи между КСП (и другими нисходящими путями) и двигательными нейронами в спинном мозге возникают посредством вставочных нейронов. Во вставочных нейронах происходит объединение сенсорной и корковой информации, что сопровождается специфической и организованной активацией пулов двигательных нейронов и сокращением иннервируемых ими мышц.

2. Источники афферентных путей к первичной моторной коре:
— Моторная кора противоположной стороны через мозолистое тело. Наиболее прочные комиссуральные связи возникают между соответствующими колоннами клеток, иннервирующими мышцы живота и спины. Это вполне понятно, поскольку данные группы мышц обычно сокращаются одновременно с двух сторон, поддерживая вертикальное положение головы и туловища. Самые слабые комиссуральные связи имеются между колоннами клеток, контролирующими дистальные группы мышц конечностей, движения в которых слева и справа происходят независимо друг от друга.
— Соматосенсорная кора. Кожные колонны клеток в полях 1, 2 и 3 отдают кпереди короткие ассоциативные волокна (взаимосвязи с зоной кисти особенно многочисленные; эти волокна короткие, так как зоны, отвечающие за кисть в сенсорной и моторной коре, обычно занимают соседние стенки центральной борозды). Проприоцептивные клеточные колонны получают афферентые волокна от аннуло-спиральных окончаний мышечных веретен; они отдают короткие ассоциативные волокна к соответствующим двигательным колоннам, активируя рефлексы растяжения с длинной дугой.
— Противоположное зубчатое ядро. Мозжечок принимает участие в выборе нужных мышц-синергистов, а также времени и силы их сокращений.
— Дополнительная моторная зона (ДМЗ).

отделы мозга отвечающие за движение. motornaia zona 1. отделы мозга отвечающие за движение фото. отделы мозга отвечающие за движение-motornaia zona 1. картинка отделы мозга отвечающие за движение. картинка motornaia zona 1.(А) Предполагаемая функциональная организация сегмента запястье-кисть в первичной двигательной коре (М1) у обезьян и других приматов.
Несмотря на то, что М1 имеет в целом соматотопическую организацию, локальная соматотопическая структура разбита в виде мозаики на радиальные ряды нейронов, инициирующих небольшие специфические движения.
Миниколонны, отвечающие за движения отдельных пальцев, могут примыкать к колоннам запястья, локтя или плеча, а подгруппы этих миниколонн объединены по функции образования более сложных последовательностей движений, таких как хватание, вытягивание руки или защита рукой от удара.
(Б) Пространственная организация моторных нейронов коры приматов, контролирующих движения мышечных групп.
От медиальной стороны к латеральной они располагаются в следующей последовательности: стопа, голень, плечо, кисть и голова (голубой).
В каудальном отделе М1 лежат двигательные нейроны, взаимодействующие непосредственно с двигательными нейронами (спинного мозга) и отвечающие за высокоточные движения, необходимые для выполнения тонких двигательных навыков.
Эти нейроны расположены в медиально-латеральной последовательности от проксимальных (красный) до дистальных (желтый) групп мышц. Авторы обозначают эту зону как «новую М1», подотдел «старой М1» (голубая) для того, чтобы отразить недавнее возникновение сложной двигательной активности и эволюционно «нового» отдела моторной коры.

б) Премоторная кора. Премоторная кора (поле 6 на латеральной поверхности полушария) примерно в 6 раз крупнее первичной моторной коры. Она получает когнитивные импульсы от лобной доли при намерении произвести движение, а также от теменной доли (поле 7), передающей огромное количество тактильной и пространственно-зрительной информации. Максимальная ее активация происходит, когда последовательность движений происходит в ответ на зрительные или соматосенсорные раздражители, такие как приближение к объекту, полностью находящему в поле зрения, или идентификация объекта, находящегося вне поля зрения путем ощупывания. Активация премоторной коры, как правило, двусторонняя. Одним из объяснений служит межполушарная передача двигательных программ через мозолистое тело.

Следует также принимать во внимание обширные связи премоторной коры с ядрами ствола мозга, дающими начало ретикуло-спинномозговым путям (и небольшому пути к КСП). Поражения, затрагивающие премоторную кору у человека, встречают редко, они характеризуются нестабильностью положения в противоположном плече и бедре. Таким образом, важной функцией премоторной коры, вероятно, служит двустороннее поддержание позы, например фиксация плечей при работе двумя руками и стабилизация бедер при ходьбе. Премоторная кора может вносить вклад в восстановление функции при истинной моторной гемиплегии, возникающей вследствие сосудистого поражения, затрагивающего КСП в лучистом венце. При данном поражении во время ПЭТ-исследования наблюдают повышение активности премоторной коры; кпереди от КСП спускается корково-ретикуло-спинномозговой проводящий путь.

в) Дополнительная моторная зона (ДМЗ). В отличие от премоторной коры, реагирующей на внешние раздражители, ДМЗ (поле 6 на медиальной поверхности полушария) отвечает на внутренние раздражители и принимает особое участие в планировании движений. Это подтверждает тот факт, что ДМЗ возбуждается лобной долей (ДЛПФК) в тот момент, когда мы собираемся совершить движение, даже если движение в итоге не возникает. Важнейшей функцией ДМЗ, вероятно, является предварительное программирование последовательностей движений, уже заложенных в двигательной памяти. ДМЗ функционирует совместно с моторной петлей, проходящей через базальные ганглии, а также взаимодействует с полем 4 и отдает волокна непосредственно в КСП.

Одностороннее поражение ДМЗ может сопровождаться акинезией (невозможностью начать движение) руки и ноги с разных сторон. Двустороннее поражение приводит к тотальной акинезии, включая речевую акинезию.

1. Корковые глазодвигательные поля. На рисунке ниже показаны корковые глазодвигательные поля, участвующие в сканирующих движениях (саккадах). Их взаимодействия и функции представлены в таблице ниже.

2. Дорсолатеральная префронтальная кора (ДЛПФК). ДЛПФК — высший когнитивный центр, участвует в оценке зрительной картины, принятии решения о сознательном совершении саккад и добровольном подавлении рефлекторных саккад (произвольные саккады возникают по воле человека). Рефлекторные саккады — автоматические реакции на объекты, появляющиеся в периферическом поле зрения. Строго говоря, рефлекторные саккады следует называть ответными; они не являются истинными рефлексами, так как способны подавляться волей.

3. Поясная кора. Вместе с ДЛПФК участвует в принятии решений и оценке эмоциональной важности, или ценности, видимых объектов.

4. Дополнительное глазодвигательное поле. Занимает передний отдел ДМЗ и участвует в планировании движений, особенно, если требуются множественные саккадические движения.

отделы мозга отвечающие за движение. korkovie glazodvigatelnie polia. отделы мозга отвечающие за движение фото. отделы мозга отвечающие за движение-korkovie glazodvigatelnie polia. картинка отделы мозга отвечающие за движение. картинка korkovie glazodvigatelnie polia.

5. Фронтальное глазодвигательное поле. Фронтальное глазодвигательное поле (ФГДП) инициирует произвольные саккады, благодаря которым происходит переключение внимания на раздражитель или подавляется стремление к прямому взору на новый раздражитель в ответ на одно или более из трех перечисленных афферентных влияний. ФГДП «поддерживает» карту зрительного пространства относительно глазодвигательных координат и вместе с верхним холмиком играет ключевую роль в создании зрительно-направленных и произвольных саккад; поражения обеих структур приводят к необратимой утрате саккадических движений. Клинические и экспериментальные наблюдения у обезьян показали следующее.
• ФГДП имеют тоническую двустороннюю активность.
• Повышение активности среднего отдела ФГДП с одной стороны приводит к образованию горизонтальных саккад, направленных в сторону противоположного зрительного поля (противоположной саккады).
• Повышение активности верхнего отдела с одной стороны приводит к созданию нисходящей косонаправленной саккады; двусторонняя активация верхнего отдела приводит к обращению взора обоих глаз вертикально вниз.
• Повышение активности в нижнем отделе приводит к аналогичным последствиям относительно взора вверх.

6. Теменное глазодвигательное поле. Теменное глазодвигательное поле (ТГДП) отвечает за создание рефлекторных саккад и побуждает ФГДП к созданию произвольных саккад. ТГДП также участвует в пространственном восприятии, создавая схему зрительной картины.

Поражения префронтальной коры и лобной доли описаны в отдельной статье на сайте.

отделы мозга отвечающие за движение. . отделы мозга отвечающие за движение фото. отделы мозга отвечающие за движение-. картинка отделы мозга отвечающие за движение. картинка .Зоны коры больших полушарий, участвующие в саккадических движениях глаз.
(1) Дополнительное глазодвигательное поле.
(2) Фронтальное глазодвигательное поле.
(3) Теменное глазодвигательное поле.
(4) Ассоциативная зрительная кора.

в) Синдром ригидного человека (СРЧ). Редкое, но легко распознаваемое заболевание, известное как синдром ригидного человека (СРЧ), или синдром мышечной скованности, — аутоиммунное заболевание центральной нервной системы, связанное с наличием циркулирующих антител к глутаматдекарбоксилазе (GAD65),— ключевому ферменту, преобразующему глутамат в ГАМК. Синдром ригидного человека (СРЧ) проявляется скованностью мышц с эпизодическими мышечными спазмами (вызванными одновременным сокращением мышц синергистов и антагонистов, преимущественно в проксимальных отделах конечностей и осевой мускулатуре) и боязнью выполнения определенных задач. В норме контроль верхних моторных нейронов происходит за счет тонической активности прилежащих тормозных ГАМК-ергических вставочных нейронов.

Одни зоны коры поражаются сильнее других, а клинические проявления связаны с нарушением функции этих ГАМК-ергических нейронов, что приводит к гипервозбудимости коры. В настоящее время уточняют роль циркулирующих антител в патогенезе синдрома ригидного человека (СРЧ).

г) Резюме. Кора больших полушарий имеет одновременно пластинчатую и колончатую организацию. К двум основным типам клеток относят пирамидные и непирамидные клетки (вставочные нейроны). Пирамидные клетки расположены в слоях (пластинках) II, III, а также V (в виде веретеновидных клеток) и VI. Слой IV богат шиповатыми звездчатыми клетками (модифицированными пирамидными нейронами). Мелкие пирамидные клетки связывают извилины одного полушария, средние пирамидные клетки связывают между собой соответствующие зоны двух полушарий, а от крупных пирамидных клеток отходят волокна к таламусу, стволу мозга и спинному мозгу. Все корковые волокна считают возбуждающими; шиповатые звездчатые клетки также считают возбуждающими пирамидными клетками.

Корковые вставочные нейроны—тормозные. Колончатая организация представлена колоннами клеток, которые рассматривают в качестве первичной функциональной единицы обработки информации в коре; они состоят из определенных нейронных «микроцепей».

Части тела в соматосенсорной коре представлены инвертированными. Важная входящая информация поступает от вентрального заднего ядра таламуса, а направляется к первичной моторной коре и нижней теменной коре. В первичную зрительную кору входит коленчато-шпорный путь. Клеточные реакции различной сложности зависят от передачи информации с более простых типов клеток на более сложные. Свойство ассоциативных зрительных зон—распознавание черт, например цвета, формы и движения. Обработка цвета и формы продолжается в коре нижележащей височной доли, а движений—в задней теменной доле. Первичная слуховая кора занимает верхнюю поверхность верхней височной извилины, а ассоциативная слуховая кора расположена с латеральной стороны от нее.

Первичная моторная кора занимает прецентральную извилину. Она дает начало большей части волокон пирамидного тракта, а части тела в ней представлены инвертированными. Основная информация подходит к ней от соматосенсорной коры, мозжечка (через вентральное заднее ядро таламуса), премоторной и дополнительной моторной зон. Премоторная кора отвечает преимущественно на внешние раздражители, а дополнительная моторная зона — на внутренние стимулы. Дорсолатеральная префронтальная кора контролирует четыре различных корковых зоны, в различной степени участвующих в создании противоположных саккад.

Редактор: Искандер Милевски. Дата публикации: 22.11.2018

Источник

Голова – предмет тёмный, но исследованию подлежит. Что за что отвечает в головном мозге?

Способность дышать и двигаться, чувствовать боль и любить, создавать гениальные творения и совершать зло, подчас не поддающееся объяснению. Благодаря чему всё это возможно? Где скрывается наше «я»?

Как устроен головной мозг человека, как соотносятся его строение и функции, и каковы их особенности?

Попробуем разобраться в некоторых из них.

Существует положение, что чем более проста некая функция, тем точнее место ее локализации в головном мозге. С другой стороны, наиболее сложные функции обеспечиваются слаженной работой всего мозга, в связи с чем понятие «коркового центра» (определённой области коры головного мозга) большей частью относительное и условное.

Внезапно залаяла собака во дворе? Ориентировочный рефлекс в ответ на резкий звук возможен благодаря среднему мозгу. Кроме того, через этот отдел проходят пути, обеспечивающие зрение, слух, способность к движению и бдительности, контроль температуры и ряд других, которыми занимаются другие отделы мозга.

КОРА БОЛЬШИХ ПОЛУШАРИЙ ИМЕЕТ СЛОЖНОЕ
СТРОЕНИЕ И СОДЕРЖИТ 12-18 МЛРД НЕРВНЫХ
КЛЕТОК И БОРОЗДАМИ ДЕЛИТСЯ НА НЕСКОЛЬКО ДОЛЕЙ

А теперь закройте глаза и коснитесь пальцами кончика носа. Получилось без особого труда, не так ли? Это при том, что в этом плавном действии было задействовано много разных мышц. За координацию, равновесие, нормальные движения спасибо мозжечку.

Сложнее, сложнее

Эмоции, такие эмоции. Без них наша жизнь была бы не такой счастливой (несчастной?). Внутренняя борьба, иногда заставляющая нас сделать то, о чем мы потом пожалеем. Знакомо? Благодарим лимбическую систему. Интересно что это такое? Чуть подробнее о ней (и ее частях).

Беспокоитесь, грустите? А может вам страшно? Это возможно благодаря миндалевидному телу (миндалине). Любопытный факт: с левой миндалиной бывает связано и чувство счастья, а вот у правой «настроение» плохое всегда.

Читайте материал по теме: Билл Гейтс и его синдром Аспергера

И наконец.

Итак, какова ее роль?

Читайте материал по теме: Что происходит с мозгом аутистов?

С лобной долей связана также наша способность к движению (благодаря моторной коре), чёткому и разборчивому письму, артикуляции.

Ассоциативные функции обеспечиваются теменной долей коры. Здесь располагаются области, отвечающие за осязание, чёткие, комбинированные целенаправленные движения, чтение, познавание предметов, явлений, их смысла и символического значения.

Бросается в глаза, что.

Наиболее сложные функции памяти и мышления не имеют чёткого расположения, в их реализации принимают участие различные области мозга.

Почему важно знать, как связаны функция и структура головного мозга?

Диагностика. Представьте: у человека сильно разболелась голова. Спустя несколько минут он уже не смог поднять правую руку, а его речь стала невнятной. У пациента ухудшилось зрение с одной стороны, тогда как офтальмолог патологию со стороны глаз не обнаружил. Или, например, человек перестал понимать обращённую к нему речь.

Читайте материал по теме: Как предотвратить инсульт?

Зная о том, какие отделы в головном мозге отвечают за ту или иную способность, можно предполагать место расположения патологического процесса.

Лечение и реабилитация. Предположим, что в результате повреждения участка головного мозга после инсульта у человека «выпала» какая-то функция. Значит ли это, что теперь она не вернётся? Нет, далеко не всегда.

Благодаря такому свойству мозга, как пластичность, возможно эту функцию восстановить. Говоря простыми словами, под пластичностью можно понимать способность других областей мозга брать на себя функцию повреждённой его части. Однако этим процессом нужно целенаправленно заниматься. Поэтому после инсульта больному бывает необходим курс нейрореабилитации, в процессе которого он заново учится говорить, ходить, обслуживать себя.

Нет. Приведённые выше описания взаимоотношений структуры и функции далеко не исчерпывающие: на деле всё гораздо сложнее и выходит далеко за рамки объёма небольшой статьи.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *