обучение сопровождается появлением особого состояния мозга обеспечивающего

ПЕДАГОГИЧЕСКАЯ ПСИХОФИЗИОЛОГИЯ

Большинство людей достаточно осведомлены о влиянии стресса и его отрицательных последствиях. Мы хорошо знаем, что острый и хронический стресс любой этиологии не только снижает результаты производственной и учебной деятельности, но и влияет на развитие и протекание когнитивных процессов, вызывает задержку в развитии ребенка, влияет на становление его как личности, на формирование его индивидуального стиля деятельности.

Компьютеризация школ создает наиболее благоприятные условия для контроля обучения по физиологическим параметрам. Эта задача может быть решена с помощью мониторинга функционального состояния учащегося, а также через компьютеризованную оценку его индивидуальных психофизиологических характеристик. Особое внимание должны привлекать те индивидуальные особенности, которые наиболее тесно связаны с механизмами регуляции состояний и, в частности, влияют на развитие неоптимальных состояний и стресса [17, 31, 63].

Сильное отрицательное влияние на обучение оказывают высокая индивидуальная тревожность, повышенная реактивность симпатической системы. Учащиеся с этими свойствами чаще других испытывают стресс и связанное с ним нарушение когнитивной деятельности. Особенно очевидным это становится во время экзаменов. В целом ситуация экзамена для большинства студентов является стрессогенной, однако многие из них способны преодолевать этот стресс [57].

Исследование психофизиологических характеристик, которые могли бы предсказывать развитие экзаменационного стресса, было проведено Дж.Спинксом (J. Spinks) на студентах психологического факультета в Гонконге. Исследователи установили, что у лиц с более высокой симпатической активацией, которую измеряли по скорости адаптации электродермальной реакции к повторяющемуся звуковому тону, а также по уровню потоотделения на ладони, в период экзаменационной сессии отмечалось подавление функций иммунной системы.

У студентов, у которых привыкание электродермальной реакции на звук, тестируемое во время летних каникул, происходило медленно (это указывало на сильную активацию симпатической системы), в течение учебного года и во время экзаменационной сессии в слюне снижалось содержание иммуноглобулина, что говорило о наличии стресса. Была установлена значимая положительная корреляция между скоростью угасания электродермальной реакции и содержанием иммуноглобулина.

Обычно под функциональным состоянием понимают тот уровень активации мозговых структур, на котором протекает конкретная психическая деятельность человека, в том числе и обучение (Данилова Н.Н., 1992).

Отношения между уровнем активации мозга и эффективностью выполнения различных действий, операций, реализацией навыков, так же как и результатов обучения, неоднократно исследовались как в опытах с человеком, так и в экспериментах на животных. Зависимость эффективности деятельности от уровня активации описывается куполообразной кривой, показывающей, что наиболее высокие результаты достигаются не при самой высокой активации нервной системы, а при более низкой, получившей название оптимального функционального состояния. Оно наиболее адекватно отвечает тем требованиям, которые предъявляет содержание решаемой задачи к энергетическому обеспечению мозговых структур. Сдвиг ФС в сторону от оптимального, независимо от его направленности, сопровождается снижением результативности как психических, так и физических действий.

ФС зависит от многих факторов: от содержания решаемой задачи, степени ее трудности, а также заинтересованности человека в ее успешном решении, от силы и характера получаемого подкрепления в виде награды или наказания и индивидуальных особенностей субъекта. Сила или слабость нервных процессов, индивидуальная устойчивость к стрессу или тревожность, нейротизм, интроверсия или экстраверсия являются факторами, которые вносят свой вклад в уровень функционального состояния [81, 83].

Положение о значимости ФС для процесса обучения в условиях школы впервые было проверено в 1988-1989 гг. канадским психофизиологом из Монреаля К.Мангиной (С. Mangina), предпринявшим попытку оптимизировать обучение за счет ведения его в коридоре оптимального состояния. Он доказал, что, управляя ФС учащегося, можно существенно повысить эффективность обучения даже у детей с задержкой развития.

Во время выполнения заданий, билатерально (с пальцев правой и левой рук ученика) регистрировали кожную проводимость по постоянному току (метод Фере), которая является одним из показателей активации организма. Предварительно у успевающих учеников были измерены пределы колебаний кожной проводимости во время занятий в классе. Они изменялись в диапазоне от 6,5 до 8,5 микросименсов (единиц проводимости), который и был принят за коридор оптимального функционального состояния.

По результатам исследований, выполненных в лаборатории К.Мангины более чем на 2000 детей и подростков, активация у неуспевающих детей, как правило, выходила за пределы установленного коридора оптимального функционального состояния успевающих учеников или была неустойчивой. Если же во время выполнения теста Мангины ФС отстающего ученика удерживали в пределах коридора оптимальной активации, контролируя его по реакциям обеих рук, это способствовало более быстрому формированию специфических навыков. В итоге это приводило к лучшему усвоению у детей с задержкой развития школьной программы, повышению их успеваемости, что подтвердилось и более высокими оценками.

Таким образом, сохранность нервных связей, определяющих программу конкретного поведения, еще не гарантирует ее реализацию. Необходимо подключение модулирующей системы мозга, в частности, использующей дофаминергический механизм регуляции, который создает биохимическую основу двигательной активности.

Современная система обучения выдвигает новые требования к обучающим компьютерным программам. Программы нового поколения должны включать систему психофизиологической оценки мотивированности, включенности учащегося в познавательную деятельность. Это предполагает измерение и контроль за интенсивностью исследовательской деятельности и индивидуальным функциональным состоянием учащегося по психофизиологическим показателям.

Такие обучающие программы должны управлять процессом обучения не только по результатам приобретенных знаний, но и по параметрам контроля за функциональным состоянием. Необходимость автоматизированного контроля за ФС учащегося в процессе обучения вытекает из роли и места ФС в составе психической деятельности.

Соединение знания психофизиологии с компьютеризованным обучением открывает новые перспективы для индивидуального образования. Предполагается, что контроль за обучением осуществляется с помощью двух контуров с обратными связями. Первый строится на основе изучения структуры приобретенных знаний методом многомерного шкалирования. Второй служит для оценки функционального состояния на основе полиграфической регистрации ряда физиологических параметров и для оптимизации обучения на основе манипулирования состоянием учащегося.

Наиболее эффективно эта задача может быть решена на базе компьютерной техники. На основе компьютеризованного тестирования уровня усвоенных знаний и непрерывного компьютерного мониторинга ФС ученика подбирается такой режим предъявления информации (для обучения и проверки знаний), который обеспечит ведение обучения в коридоре оптимальных функциональных состояний. Управляя содержанием, темпом и величиной информационной нагрузки в зависимости от индивидуального ФС, можно сделать обучение более индивидуализированным и, следовательно, более эффективным.

Компьютеризованная полиграфия физиологических показателей может помочь в идентификации состояний тревожности, агрессии или депрессии для последующей коррекции негативных эмоций. Среди различных процедур, используемых для коррекции негативного отношения к учебе, существует весьма перспективная процедура, базирующаяся на активации исследовательского поведения, которое является антагонистом депрессии и тревожности. Компьютеризованная технология обучения уникальна для создания обучающих программ на основе процедуры «обучение через исследование» [155, 158].

Накопление физиологических данных в компьютере позволяет осуществлять продолжительный контроль за эффективностью обучения. ФС сильно зависит от подкрепления. В процессе обучения субъект сталкивается со сложными задачами. Если в условиях выработки тонкой дифференцировки сигналов он получает только негативное подкрепление, могут возникнуть невротические реакции. Результатом этого может быть появление негативного отношения к специфическому предмету или обучению как таковому.

Если требования, предъявляемые процессом обучения, оказываются выше информационной способности учащегося, то в силу реципрокных отношений между ориентировочным и оборонительным рефлексами происходит подавление ориентировочного рефлекса за счет замещения его оборонительным. Пассивная форма оборонительного рефлекса характеризуется депрессией или потерей интереса. Активная форма оборонительного рефлекса выражается в различных формах агрессивного поведения. В случае появления оборонительных реакций вся ситуация обучения может стать сигналом для развития негативных эмоций. Подавление негативного отношения к процессу обучения может быть достигнуто лишь путем стимуляции творческой активности, которая связана с позитивным эмоциональным тоном. Обучение, которое строится на исследовательской деятельности, является наиболее эффективным обучением [101, 178].

Оптимальный уровень активации мозга сопровождается вызовом физических ориентировочных реакций, отражающихся в ЭЭГ-реакциях активации, расширении сосудов лба, падении сопротивления кожи и снижении частоты сердечных сокращений. Учебный материал, вызывающий ориентировочный рефлекс, хорошо запоминается. Привыкание ориентировочного рефлекса в результате повторного предъявления материала может быть устранено через произвольный ориентировочный рефлекс, закладывающий основу для творческой инициативы.

Могут быть дифференцированы два типа активации: продуктивная активация, базирующаяся на ориентировочном рефлексе, и непродуктивная активация, связанная с тревожностью и агрессией как формами оборонительного рефлекса. Роль компьютерной полиграфии в обучении состоит в том, что она позволяет выявлять неоптимальные функциональные состояния: непродуктивную, высокую активацию, связанную со стрессом, тревожностью, агрессией, или сниженный уровень активности за счет отсутствия мотивации или отказа от работы из-за утомления. Манипуляция ФС учащегося позволяет вести обучение в коридоре продуктивной активации, связанной с ориентировочным рефлексом.

Источник

Глава 11 ПЕДАГОГИЧЕСКАЯ ПСИХОФИЗИОЛОГИЯ

Данилова Н.Н.

Психофизиология: Учебник для вузов. — М.: Аспект Пресс, 2000.— 373 с. ISBN 5-7567-0220-2.

В учебнике впервые в отечественной литературе пси­хофизиология представлена как междисциплинарное направление исследований мозговых механизмом субъек­тивных процессов и состояний (восприятия, внимания, памяти, эмоций, мышления, речи, сознания и др.). Макроуровень анализа физиологических механизмов психических явлений сочетается с их изучением на ней­ронном и молекулярном уровнях. Отражено современ­ное состояние науки в области кодирования информа­ции нервной системы, по проблеме асимметрии мозга, индивидуальных различий, механизмов научения, фун­кциональных состояний, неинвазивных методов реги­страции клеточной активности мозга человека (ПЭТ, магнитно-резонансная томография и др.), новые на­правления прикладной психофизиологии (педагогичес­кая, социальная, экологическая).

Для студентов, аспирантов, преподавателей, науч­ных работников психологических, педагогических, био­логических, медицинских факультетов.

НОВЫЕ НАПРАВЛЕНИЯ ПРИКЛАДНОЙ ПСИХОФИЗИОЛОГИИ

Глава 11 ПЕДАГОГИЧЕСКАЯ ПСИХОФИЗИОЛОГИЯ

Проблема оптимизации обучения — центральная для педагоги­ки. Многочисленные школы и концепции обучения отражают не­прерывный поиск и усилия, предпринимаемые педагогами и психо­логами в этом направлении. Однако существует чисто психофизио­логический аспект решения данной проблемы. В настоящее время управление процессом обучения осуществляется главным образом с учетом результатов успеваемости, на основе тестирования успеш­ности обучения. При этом вне поля внимания остается вопрос о том, является ли выбранный педагогом режим обучения оптималь­ным с точки зрения биологических критериев. Другими словами, учитывается ли «биологическая цена», которую ученик платит за усвоение, приобретение знаний, т.е. те энергетические затраты, которые сопровождают процесс обучения и которые могут быть оценены через изменения функционального состояния учащегося.

Большинство людей достаточно осведомлены о влиянии стресса и его отрицательных последствиях. Мы хорошо знаем, что острый и хронический стресс любой этиологии не только снижает резуль­таты производственной и учебной деятельности, но и влияет на развитие и протекание когнитивных процессов, вызывает задерж­ку в развитии ребенка, влияет на становление его как личности, на формирование его индивидуального стиля деятельности.

Компьютеризация школ создает наиболее благоприятные ус­ловия для контроля обучения по физиологическим параметрам. Эта задача может быть решена с помощью мониторинга функциональ-

ного состояния учащегося, а также через компьютеризованную оценку его индивидуальных психофизиологических характеристик. Особое внимание должны привлекать те индивидуальные особен­ности, которые наиболее тесно связаны с механизмами регуляции состояний и, в частности, влияют на развитие неоптимальных со­стояний и стресса.

Сильное отрицательное влияние на обучение оказывают высо­кая индивидуальная тревожность, повышенная реактивность сим­патической системы. Учащиеся с этими свойствами чаще других испытывают стресс и связанное с ним нарушение когнитивной деятельности. Особенно очевидным это становится во время экза­менов. В целом ситуация экзамена для большинства студентов яв­ляется стрессогенной, однако многие из них способны преодоле­вать этот стресс.

Исследование психофизиологических характеристик, которые могли бы предсказывать развитие экзаменационного стресса, было проведено Дж. Спинксом (J. Spinks) на студентах психологическо­го факультета в Гонконге. Исследователи установили, что у лиц с более высокой симпатической активацией, которую измеряли по скорости привыкания электродермальной реакции к повторяюще­муся звуковому тону, а также по уровню потоотделения на ладо­ни, в период экзаменационной сессии отмечалось подавление фун­кций иммунной системы.

У студентов, у которых привыкание электродермальной реак­ции на звук, тестируемое во время летних каникул, происходило медленно (это указывало на сильную активацию симпатической системы), в течение учебного года и во время экзаменационной сессии в слюне снижалось содержание иммуноглобулина, что го­ворило о наличии стресса. Была получена значимая положитель­ная корреляция между скоростью угасания электродермальной реакции и содержанием иммуноглобулина. Это позволило по пси­хофизиологической реакции — скорости привыкания реакции в виде изменения кожной проводимости — предсказывать появле­ние экзаменационного стресса у студента. Индекс потоотделения менее коррелировал с состоянием иммунной системы. Однако при разделении группы, состоящей из 250 студентов, на две (по меди­ане) между ними были выявлены значительные различия. У лиц с высокими значениями потоотделения (индекс симпатической ак­тивности) содержание иммуноглобулина было снижено. Связь меж­ду вегетативной (симпатической) и иммунной системами, кото­рая осуществляется, по-видимому, через эндокринную систему, объясняет, почему стресс и неоптимальные функциональные со­стояния приводят к нарушениям иммунной системы и как следствие — к онкологическим заболеваниям, иммунодефициту, ин­фекционным болезням и др.

обучение сопровождается появлением особого состояния мозга обеспечивающего. image002. обучение сопровождается появлением особого состояния мозга обеспечивающего фото. обучение сопровождается появлением особого состояния мозга обеспечивающего-image002. картинка обучение сопровождается появлением особого состояния мозга обеспечивающего. картинка image002.Рис. 62. Подавляющий эффект шумового дистрактора на волну ожидания (справа). Вверху — у здорового субъекта, внизу — у пациента с депресси­ей. Стрелками показано время предъявления стимулов. Первый стимул в каждой паре — щелчок (предупреждающий стимул), второй — импера­тивный (вспышки света, которые отключаются при реакции на него (нажим на кнопку). Видно полное устранение волны ожидания в условиях отвлечения внимания у пациента (по С. McCallum, 1967).

Его величина с привлечением внимания к стимулу и мотивированностью субъекта растет. Отвле­кающие стимулы — дистракторы — уменьшают ее. На амплитуду УНО сильно влияют и некоторые другие качества субъекта: она меньше у нестабильных интровертов по сравнению со стабильны­ми экстравертами (Wen-e P.E., 1985). На рис. 62 показано влияние тревожности на амплитуду УНО. Видно, что под влиянием отвле­кающего шума у здорового человека амплитуда потенциала ожи­дания уменьшается незначительно, тогда как у пациента с невро­тической тревожностью она полностью уничтожается шумовым дистрактором. Подавление, отсутствие УНО на ожидаемый сти­мул коррелирует с неспособностью таких пациентов контролиро­вать свое внимание.

Важность мониторинга функционального состояния учащихся для оптимизации обучения вытекает из роли и места мозговых механиз­мов, регулирующих состояния, в психической деятельности.

Обычно под функциональным состоянием понимают тот уро­вень активации мозговых структур, на котором и протекает конк­ретная психическая деятельность человека, в том числе и обуче­ние (Данилова Н.Н., 1992).

Отношения между уровнем активации мозга и эффективнос­тью выполнения различных действий, операций, навыков, так же как и результатов обучения, неоднократно исследовались как в опытах с человеком, так и в экспериментах на животных. Зависи­мость эффективности деятельности от уровня активации описыва­ется куполообразной кривой, показывающей, что наиболее высо­кие результаты достигаются не при самой высокой активации не­рвной системы, а при более низкой, получившей название оптимального функционального состояния. Оно наиболее адекватно отвечает тем требованиям, которые предъявляет содержание решаемой задачи к энергетическому обеспечению мозговых структур. Сдвиг ФС в сторону от оптимального независимо от его направленности со­провождается снижением результативности как психических, так и физических действий.

Диапазон изменений состояний бодрствующего человека чрез­вычайно широк. Его границы представлены состоянием дремоты, сопровождающейся потерей интереса и внимания, с одной сторо­ны, и чрезмерным возбуждением и напряженностью, которые обычно наблюдаются в состоянии стресса, — с другой. Самые низ­кие результаты деятельности человека — наибольшее число оши­бок, снижение скорости реагирования, большое количество брака в работе — обычно связаны с этими крайними состояниями бодр­ствования.

ФС зависит от многих факторов: от содержания решаемой за­дачи, степени ее трудности, а также заинтересованности человека в ее успешном решении, от силы и характера получаемого под­крепления в виде награды или наказания и индивидуальных осо­бенностей субъекта. Сила или слабость нервных процессов, инди­видуальная устойчивость к стрессу или тревожность, нейротизм, интроверсия или экстраверсия являются факторами, которые вно­сят свой вклад в уровень функционального состояния.

Оптимальное функциональное состояние меняется со сложно­стью задачи и уровнем мотивации. Это положение получило под­тверждение в исследованиях Роберта Иеркса и Джона Додсона сначала в опытах на мышах и шимпанзе. У животных они выраба­тывали дифференцировку на различение темного входа в лаби­ринт от светлого. Правильный выбор входа в лабиринт позволял мыши добраться до гнезда, где ее ожидало положительное под­крепление — мышь противоположного пола. В случае ошибок

обучение сопровождается появлением особого состояния мозга обеспечивающего. image004. обучение сопровождается появлением особого состояния мозга обеспечивающего фото. обучение сопровождается появлением особого состояния мозга обеспечивающего-image004. картинка обучение сопровождается появлением особого состояния мозга обеспечивающего. картинка image004.327

Рис. 63. Влияние трудности задачи и силы наказания на результаты обуче­ния у мышей по материалам исследований Йеркса и Додсона.

1 — трудные, 2 — средние. 3 — легкие задачи по выработке дифференцировок (различение темного и светлого). Сила электроудара дана в условных единицах.

Положение о значимости ФС для процесса обучения в услови­ях школы впервые было проверено в 1988-1989 гг. канадским пси­хофизиологом из Монреаля К. Мангиной (С. Mangina), предпри­нявшим попытку оптимизировать обучение за счет ведения его в коридоре оптимального состояния. Он доказал, что, управляя ФС учащегося, можно существенно повысить эффективность обуче­ния даже у детей с задержкой развития.

К. Мангина разработал методику (тест Мангины), позволяв­шую развивать у ребенка специфические аналитические способ­ности, что поднимало успеваемость по математике и чтению. Ме­тодика включала проведение 60 тренировочных серий, во время которых ребенок учился различать простые фигуры на фоне более

сложных, ориентируясь на их различные признаки — величину, размер, направление, пространственную ориентацию.

Во время выполнения заданий билатерально (с пальцев пра­вой и левой рук ученика) регистрировали кожную проводимость по постоянному току (метод Фере), которая является одним из показателей активации организма. Предварительно у успевающих учеников были измерены пределы колебаний кожной проводимо­сти во время занятий в классе. Им оказался коридор колебаний кожной проводимости от 6,5 до 8,5 микросименсов (единиц про­водимости), который и был принят за коридор оптимального фун­кционального состояния.

По результатам исследований, выполненных в лаборатории К. Мангины более чем на 2000 детей и подростков, активация у неуспевающих детей, как правило, выходила за пределы установ­ленного коридора оптимального функционального состояния ус­певающих учеников или была неустойчивой. Если же во время выполнения теста Мангины ФС отстающего ученика удерживали в пределах коридора оптимальной активации, контролируя его по реакциям обеих рук, это способствовало более быстрому форми­рованию специфических навыков у детей с задержкой развития. В итоге это приводило к лучшему усвоению ими школьной програм­мы, повышению успеваемости, что подтвердилось и более высо­кими оценками.

Чтобы удержать уровень активации ребенка в рамках заданного коридора, экспериментатор прибегал к различного рода воздей­ствиям, возбуждающим или успокаивающим ребенка. Для этого им использовались подача звуковых тонов на правое или левое ухо в зависимости от асимметрии показателей кожной проводимости;

вспышки света; инструкции — встать, сесть, подпрыгнуть или сфокусировать внимание на частоте своего дыхания.

Встает вопрос: насколько необходима неспецифическая акти­вация, создаваемая модулирующей системой, для нормальной пси­хической деятельности и поведения? Исследования показывают, что любые нарушения в модулирующей системе ведут к дезорга­низации поведения, как врожденного, так и приобретенного за время жизни. У крыс с разрушениями модулирующей системы (восходящих дофаминергических путей)’, создающими дефицит дофамина, полностью нарушаются все виды поведения. Они пере­стают пить, есть. Однако болевое раздражение у таких животных

‘ По дофаминерппеским путям информация перелается с помощью дофами­на (ДА) — одного из медиаторов. От ДА зависит актуализация моторных программ врожденного поведения и приобретенных навыков.

может восстановить пищевое, половое и материнское поведение. Кроме того, такая крыса может плавать только в холодной воде, а в теплой воде она тонет, не делая никаких попыток к спасению. Холодная вода и болевое раздражение компенсируют дефицит до­фамина. Если такому животному ввести апоморфин (стимулятор рецепторов дофамина), утраченные функции также восстанавли­ваются.

Таким образом, сохранность нервных связей, определяющих программу конкретного поведения, еще не гарантирует ее реали­зацию. Необходимо подключение модулирующей системы мозга, в частности, использующей дофаминергический механизм регу­ляции, который создает биохимическую основу двигательной ак­тивности.

Обнаружен также специальный механизм, который автомати­чески подстраивает функциональное состояние под требования решаемой задачи. В опытах Б.И. Котляра (1986) показано, что уже сама процедура обучения (выработка условного рефлекса) увели­чивает активацию нейронов, вовлеченных в процесс обучения. У кролика вырабатывались условные рефлексы при сочетании зву­кового стимула с электрокожным раздражением. Примерно 40% нейронов гиппокампа научались отвечать на условный звуковой сигнал реакцией, которая ранее вызывалась лишь электрокожным раздражением. При этом появление условного рефлекса зависело от наличия определенного уровня тонической фоновой активнос­ти нейрона, которая постепенно росла в процессе формирования условного рефлекса. Ее снижение непременно сопровождалось выпадением условного ответа. Таким образом, обучение сопровож­дается появлением особого состояния мозга, обеспечивающего формирование синаптических контактов, в которых кодируется новая программа действий. Регуляция функционального состоя­ния — непременная составляющая психической деятельности и поведения, которые вместе образуют единое целое.

Современная система обучения выдвигает новые требования к обучающим компьютерным программам. Программы нового поко­ления должны включать систему психофизиологической оценки мотивированности, включенности учащегося в познавательную деятельность. Это предполагает измерение и контроль за интен­сивностью исследовательской деятельности и индивидуальным функциональным состоянием учащегося по психофизиологичес­ким показателям.

Такие обучающие программы должны управлять процессом обучения не только по результатам приобретенных знаний, но и по параметрам контроля за функциональным состоянием. Необ-

ходимость автоматизированного контроля за ФС учащегося в про­цессе обучения вытекает из роли и места ФС в составе психичес­кой деятельности.

Соединение психофизиологии с компьютеризованным обуче­нием открывает новые перспективы для индивидуального образо­вания. Предполагается, что контроль за обучением осуществляется с помощью двух контуров с обратными связями. Первый строится на основе изучения структуры приобретенных знаний методом многомерного шкалирования. Второй служит для оценки функци­онального состояния на основе полиграфической регистрации ряда физиологических параметров и для оптимизации обучения на ос­нове манипулирования состоянием учащегося.

Наиболее эффективно эта задача может быть решена на базе компьютерной техники. На основе компьютеризованного тестиро­вания уровня усвоенных знаний и непрерывного компьютерного мониторинга ФС ученика подбирается такой режим предъявления информации (для обучения и проверки знаний), который обеспе­чит ведение обучения в коридоре оптимальных функциональных состояний. Управляя содержанием, темпом и величиной инфор­мационной нагрузки в зависимости от индивидуального ФС, можно сделать обучение более индивидуализированным и, следователь­но, более эффективным.

Компьютеризованная полиграфия физиологических показате­лей может помочь в идентификации состояний тревожности, аг­рессии или депрессии для последующей коррекции негативных эмоций. Среди различных процедур, используемых для коррекции негативных отношений к учебе, существует весьма обещающая процедура, базирующаяся на активации исследовательского пове­дения, которое является антагонистом депрессии и тревожности. Компьютеризованная технология обучения уникальна для созда­ния обучающих программ на основе процедуры «обучение через исследование».

В общем виде идея двухконтурного управления процессом обу­чения представлена на рис. 64. Видны два контура с обратными связями: слева — блок стимуляции, справа — сложная живая сис­тема, обрабатывающая информацию. Верхняя часть рисунка дает представление об управлении обучением по результатам приобре­тенных знаний. Существуют различные способы оценки знаний. Однако в последние годы в психофизике наметилось новое перс­пективное направление, которое дает возможность на основе по­строения семантических пространств получать информацию о структуре знаний ученика по конкретному материалу, а не только оценку по уровню знаний (Терехина А.Ю.. 1986). В нижней части

обучение сопровождается появлением особого состояния мозга обеспечивающего. image006. обучение сопровождается появлением особого состояния мозга обеспечивающего фото. обучение сопровождается появлением особого состояния мозга обеспечивающего-image006. картинка обучение сопровождается появлением особого состояния мозга обеспечивающего. картинка image006.331

Рис. 64. Схема двухконтурного управления процессом обучения: по ре­зультатам приобретенных знаний и по результатам мониторинга индиви­дуального функционального состояния.

рисунка показан контур управления по психофизиологическим па­раметрам состояния.

Накопление физиологических данных в компьютере позволя­ет осуществлять продолжительный контроль за эффективностью обучения. ФС сильно зависит от подкрепления. В процессе обуче­ния субъект сталкивается со сложными задачами. Если в условиях выработки тонкой дифференцировки сигналов субъект получает только негативное подкрепление, могут возникнуть невротичес­кие реакции. Результатом этого может быть появление негатив­ного отношения к специфическому предмету или обучению как таковому.

Если требования, предъявляемые процессом обучения, оказы­ваются выше информационной способности учащегося, то в силу реципрокных отношений между ориентировочным и оборонитель­ным рефлексами происходит подавление ориентировочного реф­лекса за счет замещения его оборонительным. Пассивная форма оборонительного рефлекса характеризуется депрессией или поте­рей интереса. Активная форма оборонительного рефлекса выража-

ется в различных формах агрессивного поведения. В случае появле­ния оборонительных реакций вся ситуация обучения может стать сигналом для развития негативных эмоции. Подавление негатив­ного отношения к процессу обучения может быть достигнуто лишь путем стимуляции творческой активности, которая связана с по­зитивным эмоциональным тоном. Обучение, которое строится на исследовательской деятельности, является наиболее эффективным обучением.

Оптимальный уровень активации мозга сопровождается вызовом фазических ориентировочных реакций, отражающихся в ЭЭГ-ре­акциях активации, расширении сосудов лба, падении сопротивле­ния кожи и снижении частоты сердечных сокращений. Учебный материал, вызывающий ориентировочный рефлекс, хорошо запо­минается. Привыкание ориентировочного рефлекса в результате повторного предъявления материала может быть устранено через произвольный ориентировочный рефлекс, закладывающий осно­ву для творческой инициативы.

Могут быть дифференцированы два типа активации: продук­тивная активация, базирующаяся на ориентировочном рефлексе, и непродуктивная активация, связанная с тревожностью и агрес­сией как формами оборонительного рефлекса. Роль компьютерной полиграфии в обучении состоит в том, что она позволяет выявлять неоптимальные функциональные состояния: непродуктивную, высокую активацию, связанную со стрессом, тревожностью, аг­рессией, или сниженный уровень активности за счет отсутствия мотивации или отказа от работы из-за утомления. Манипуляция ФС учащегося позволяет вести обучение в коридоре продуктивной активации, связанной с ориентировочным рефлексом.

Контроль за активацией ориентировочного типа может быть построен на оценке частоты сердечных сокращений (ЧСС). Ори­ентировочный рефлекс выражается снижением ЧСС, которому соответствуют ЭЭГ-активация и высвобождение ацетилхолина в коре, что позволяет использовать фазические реакции снижения ЧСС в качестве индекса ацетилхолиновой модуляции кортикаль­ных нейронов, необходимой для процессов обработки информа­ции. Ацетилхолиновая сенситизация кортикальных нейронов об­легчает процессы внимания и научения. Базальная холинергичес­кая система переднего мозга, регулирующая высвобождение АХ в коре для поддержания бодрствования и избирательной активации к значимым стимулам, рассматривается как необходимый компо­нент произвольного ориентировочного рефлекса и устойчивого внимания. Косвенным индексом возрастания холинергической акти­вации коры является коактивация сосудистой и дыхательной моду

ляций сердечного ритма, которая положительно коррелирует со сни­жением ЧСС и реакциями внимания. Величина сосудистой и дыхательной модуляции может быть измерена по спектру мощности СР, отражающему вклады трех основных ритмических осциллято­ров мозга, модулирующих ритм, задаваемый пейсмекером сердца. СР может рассматриваться как окно в мозг, через которое откры­ваются широкие возможности для контроля за функциональным состоянием, обеспечивающим протекание информационных процессов в мозге.

Активация ориентировочных реакций облегчает процесс обу­чения. Творческие задания стимулируют устойчивую ориентиро­вочную активность. «Обучение через исследование» — эффектив­ный принцип реализации оптимальных форм компьютерного обу­чения.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *