Гидроксид хрома 3 с чем взаимодействует
Оксид хрома (III)
Оксид хрома (III)
Способы получения
Оксид хрома (III) можно получить различными методами :
1. Термическим разложением гидроксида хрома (III):
2. Разложением дихромата аммония:
3. Восстановлением дихромата калия углеродом (коксом) или серой:
Химические свойства
1. При сплавлении оксида хрома (III) с основными оксидами активных металлов образуются соли-хромиты.
3. Оксид хрома (III) не взаимодействует с водой.
Оксид хрома (III) окисляется бромом в присутствии гидроксида натрия:
Озоном или кислородом:
Нитраты и хлораты в расплаве щелочи также окисляют оксид хрома (III):
6. Оксид хрома (III) проявляет слабые окислительные свойства при взаимодействии с более активными металлами.
Реакция очень экзотермическая, сопровождается выделением большого количества света:
Материал с сайта pikabu.ru
Если сжечь большой объем термита в тигле, то можно получить металлический хром:
Материал с сайта pikabu.ru
7. Оксид хрома (III) – твердый, нелетучий. А следовательно, он вытесняет более летучие оксиды (как правило, углекислый газ) из солей при сплавлении.
Структура, свойства и применение гидроксида хрома
гидроксид хрома является неорганическим соединением, продуктом реакции основания с солью хрома. Его химическая формула варьируется в зависимости от степени окисления хрома (+2 или +3, для этого типа соединения). Имея, таким образом, Cr (OH)2 для гидроксида хрома (II) и Cr (OH)3 для гидроксида хрома (III).
В отличие от тех гидроксидов, которые получены простым растворением оксидов металлов в воде, Cr (OH)3 он не синтезируется этим путем из-за плохой растворимости оксида хрома (Cr2О3, верхнее изображение). Тем не менее, Cr (OH)3 Считается Cr2О3· XH2Или используется в качестве изумрудно-зеленого пигмента (Guinet Green).
Если предыдущие этапы выполняются в условиях, обеспечивающих отсутствие кислорода, в реакции возникает Cr (OH)2 (гидроксид хрома). Затем требуется отделение и обезвоживание осажденного твердого вещества. В результате «истинный» Cr (OH) «рожден»3, зеленый порошок с полимерной структурой и неопределенным.
Соответственно, этот новый комплекс дегидратирует другой водный комплекс, создавая димеры, связанные гидроксидными мостиками:
Также при обезвоживании его структуру можно рассматривать как тип Cr2О3· 3Н2O; другими словами, тригидратированный оксид хрома. Однако именно физико-химические исследования твердого тела могут пролить свет на истинную структуру Cr (OH).3 в этот момент.
Физико-химические свойства
Cr (OH)3 Он имеет вид сине-зеленого порошка, но при соприкосновении с водой образует гелеобразный серо-зеленый осадок.
Нерастворим в воде, но растворим в сильных кислотах и основаниях. Кроме того, при нагревании разлагается, образуя пары оксида хрома..
амфотерность
При взаимодействии с кислотами Cr (OH)2)3(ОН)3 растворяется, потому что разрушаются гидроксильные мостики, отвечающие за желатиновое появление осадка.
Когда все Cr (ОН2)3(ОН)3 После того, как он прореагировал, получается конечный комплекс, как указано химическим уравнением:
Синтез гидроксида хрома в промышленной сфере
В промышленности его получают осаждением сульфата хрома растворами гидроксида натрия или гидроксида аммония. Аналогичным образом, гидроксид хрома получают схематической реакцией:
Как показано в предыдущей процедуре, восстановление хрома VI до хрома III имеет большое экологическое значение.
Хром III относительно безвреден для биоты, в то время как хром VI токсичен и канцероген, а также очень растворим, поэтому важно вывести его из окружающей среды..
Технология очистки сточных вод и почвы включает восстановление Cr (VI) до Cr (III).
приложений
— Средства для окрашивания волос.
— Средства по уходу за кожей.
— На чистовую обработку металлов, которая составляет 73% его потребления в промышленности.
Занятие элективного курса «Хром и его соединения»
Разделы: Химия
Цель: углубить знания учащихся по теме занятия.
Форма занятия: лекция с элементами самостоятельной работы учащихся и наблюдением за химическим экспериментом.
I. Повторение материала предыдущего занятия.
1. Ответить на вопросы и выполнить задания:
— Какие элементы относятся к подгруппе хрома?
— Написать электронные формулы атомов
— К какому типу элементов относятся?
— Какие степени окисления проявляют в соединениях?
— Как изменяется радиус атомов и энергия ионизации от хрома к вольфраму?
Можно предложить заполнить учащимся заполнить таблицу, используя табличные величины радиусов атомов, энергии ионизации и сделать выводы.
Элемент | Электронные формулы | Радиус атома нм | Энергия ионизации эВ | Степень окисления |
хром | …3s 2 3p 6 3d 5 4s 1 | 0,125 | 6,76 | +2,+3,+6 |
молибден | …4s 2 4p 6 4d 5 5s 1 | 0,136 | 7,10 | +3,+4,+5,+6 |
вольфрам | …5s 2 5p 6 5d 4 6s 2 | 0,140 | 7,98 | +3,+4,+5,+6 |
2. Заслушать сообщение учащегося по теме «Элементы подгруппы хрома в природе, получение и применение».
Хром – это белый с голубоватым отливом блестящий металл, очень твердый (плотность 7, 2 г/см 3 ), температура плавления 1890˚С.
Химические свойства: хром при обычных условиях неактивный металл. Это объясняется тем, что его поверхность покрыта оксидной пленкой (Сr2О3). При нагревании оксидная пленка разрушается, и хром реагирует с простыми веществами при высокой температуре:
Задание: составить уравнения реакций хрома с азотом, фосфором, углеродом и кремнием; к одному из уравнений составить электронный баланс, указать окислитель и восстановитель.
Взаимодействие хрома со сложными веществами:
При очень высокой температуре хром реагирует с водой:
Задание: составить электронный баланс, указать окислитель и восстановитель.
Хром реагирует с разбавленной серной и соляной кислотами:
Задание: составить электронный баланс, указать окислитель и восстановитель.
Концентрированные серная соляная и азотная кислоты пассивируют хром.
2. Соединения хрома. (2)
Задание: составить уравнение реакции в молекулярном и ионном виде взаимодействия оксида хрома (2) с серной кислотой.
Оксид хрома (2) легко окисляется на воздухе:
Задание: составить электронный баланс, указать окислитель и восстановитель.
Оксид хрома (2) образуется при окислении амальгамы хрома кислородом воздуха:
2Сr (амальгама) + О2 = 2СrО
Задание: составить уравнения реакций в молекулярном и ионном виде взаимодействия оксида хрома (2) с соляной кислотой.
Как и оксид хрома (2), гидроксид хрома (2) окисляется:
Задание: составить электронный баланс, указать окислитель и восстановитель.
Получить гидроксид хрома (2) можно при действии щелочей на соли хрома (2):
Задание: составить ионные уравнения.
3. Соединения хрома. (3)
Задание: составить уравнение реакции в молекулярном и ионном виде взаимодействия оксида хрома (3) с гидроксидом лития.
С концентрированными растворами кислот и щелочей взаимодействует с трудом:
Задание: составить уравнения реакций в молекулярном и ионном виде взаимодействия оксида хрома (3) с конценрированной серной кислотой и концентрированным раствором гидроксида натрия.
Оксид хрома (3) может быть получен при разложении дихромата аммония:
2. Гидроксид хрома (3) Сr(ОН)3 получают при действии щелочей на на растворы солей хрома (3):
Задание: составить ионные уравнения
Гидроксид хрома (3) представляет собой осадок серо – зеленого цвета, при получении которого, щелочь надо брать в недостатке. Полученный таким образом гидроксид хрома (3), в отличие от соответствующего оксида легко взаимодействует с кислотами и щелочами, т.е. проявляет амфотерные свойства:
Задание: составить уравнения реакций в молекулярном и ионном виде взаимодействия гидроксида хрома (3) с соляной кислотой и гидроксидом натрия.
При сплавлении Сr(ОН)3 со щелочами получаются метахромиты и ортохромиты:
4. Соединения хрома. (6)
Оксид хрома (6) – очень сильный окислитель, поэтому энергично взаимодействует с органическими веществами:
Окисляет также иод, серу, фосфор, уголь:
Задание: составить уравнения химических реакций оксида хрома (6) с йодом, фосфором, углем; к одному из уравнений составить электронный баланс, указать окислитель и восстановитель
При нагревании до 250 0 С оксид хрома (6) разлагается:
Оксид хрома (6) можно получить при действии концентрированной серной кислоты на твердые хроматы и дихроматы:
2. Хромовая и дихромовая кислоты.
Хромовая и дихромовая кислоты существуют только в водных растворах, образуют устойчивые соли, соответственно хроматы и дихроматы. Хроматы и их растворы имеют желтую окраску, дихроматы – оранжевую.
В кислой среде раствора хроматы переходят в дихроматы:
В щелочной среде дихроматы переходят в хроматы:
При разбавлении дихромовая кислота переходит в хромовую кислоту:
5. Зависимость свойств соединений хрома от степени окисления.
Степень окисления | +2 | +3 | +6 |
Оксид | СrО | Сr2О3 | СrО3 |
Характер оксида | основной | амфотерный | кислотный |
Гидроксид | Сr(ОН)2 | Сr(ОН)3 – Н3СrО3 | Н2СrО4 |
Н2Сr2О7
→ ослабление основных свойств и усиление кислотных→
6. Окислительно – восстановительные свойства соединений хрома.
Реакции в кислотной среде.
В кислотной среде соединения Сr +6 переходят в соединения Сr +3 под действием восстановителей: H2S, SO2, FeSO4
1. Уравнять уравнение реакции методом электронного баланса, указать окислитель и восстановитель:
2. Дописать продукты реакции, уравнять уравнение методом электронного баланса, указать окислитель и восстановитель:
Реакции в щелочной среде.
В щелочной среде соединения хрома Сr +3 переходят в соединения Сr +6 под действием окислителей: J2, Br2, Cl2, Ag2O, KClO3, H2O2, KMnO4:
Уравнять уравнение реакции методом электронного баланса, указать окислитель и восстановитель:
Дописать продукты реакции, уравнять уравнение методом электронного баланса, указать окислитель и восстановитель:
К методике проведения лекции:
.III. Домашнее задание: доработать лекцию (дописать уравнения химических реакций)
Перечень рекомендуемой литературы:
Оксид хрома CrO(II)
Низший оксид для элементов 6-й группы состава MeO получен только для хрома.
Физические свойства CrO(II):
Химические свойства CrO(II):
Гидроксид хрома Cr(OH)2(II)
Физические свойства Cr(OH)2(II):
Химические свойства Cr(OH)2(II):
Соединения хрома со степенью окисления +2 являются неустойчивыми, легко окисляются кислородом воздуха в более устойчивые соединения хрома со степенью окисления +3:
4Cr(OH)2+O2+2H2O = 4Cr(OH)3
Cr2O3 в мелкоизмельченном состоянии применяют в качестве абразивного материала (паста ГОИ), зеленого пигмента, катализатора в органическом синтезе. Оксид хрома (III) является основной добавкой к корунду при выращивании искусственных рубинов, используемых в ювелирной промышленности и часовом деле, а также в качестве лазерного материала в оптоэлектронике.
Физические свойства Cr2O3(III):
Химические свойства Cr2O3(III):
Гидроксид хрома Cr(OH)3(III)
Физические свойства Cr(OH)3(III):
Химические свойства Cr(OH)3(III):
Оксид хрома CrO2(IV) (диоксид хрома)
Диоксид хрома применяется в производстве элементов памяти для компьютеров.
Оксид хрома CrO3(VI) (хромовый ангидрид)
Физические свойства CrO3(VI):
Химические свойства CrO3(VI):
Триоксид хрома получают действием концентрированной серной кислоты на концентрированные растворы хроматов/дихроматов калия/натрия:
K2Cr2O7+H2SO4 = 2CrO3↓+K2SO4+H2O
Гидроксиды хрома
Примечательно, что хромат-ионы и дихромат-ионы при изменении среды растворов без проблем переходят друг в друга, меняя при этом окраску раствора:
Хроматы получают сплавлением хромистого железняка или оксида хрома (III) с карбонатами в присутствии кислорода (t=1000°C):
4Fe(CrO2)2+8Na2CO3+7O2 = 8Na2CrO4+2Fe2O3+8CO2
Дихроматы получают из растворов хроматов, подкисляя их.
Если вам понравился сайт, будем благодарны за его популяризацию 🙂 Расскажите о нас друзьям на форуме, в блоге, сообществе. Это наша кнопочка:
Код кнопки:
Политика конфиденциальности Об авторе
Хром, железо и медь
Твердый металл голубовато-белого цвета. Этимология слова «хром» берет начало от греч. χρῶμα — цвет, что связано с большим разнообразием цветов соединений хрома. Массовая доля этого элемента в земной коре составляет 0.02% по массе.
В промышленности хром получают прокаливанием хромистого железняка с углеродом. Также применяют алюминотермию для вытеснения хрома из его оксида.
Протекает в раскаленном состоянии.
С холодными концентрированными серной и азотной кислотой реакция не идет. Она начинается только при нагревании.
Хром способен вытеснить из солей металлы, стоящие в ряду напряжений правее него.
Соединения хрома (II)
Гидроксид хрома (II), как нерастворимый гидроксид, легко разлагается при нагревании на соответствующий оксид и воду, реагирует с кислотами, кислотными оксидами.
Соединения хрома (III)
Это наиболее устойчивые соединения, которые носят амфотерный характер. К ним относятся оксид хрома (III) гидроксид хрома (III).
H2O + NaOH + Cr2O3 → Na3[Cr(OH)6] (в растворе, гексагидроксохромат натрия)
Cr2O3 + 2NaOH → (t°) 2NaCrO2 + H2O (прокаливание, хромит натрия)
Cr2O3 + HCl = CrCl3 + H2O (сохраняем степень окисления Cr +3 )
Оксид хрома (III) реагирует с более активными металлами (например, при алюминотермии).
При окислении соединение хрома (III) получают соединения хрома (VI) (в щелочной среде).
Соединения хрома (VI)
Хроматы переходят в дихроматы с увеличением кислотности среды (часто в реакциях с кислотами). Цвет раствора меняется с желтого на оранжевый.
Разложение дихромата аммония выглядит очень эффектно и носит название «вулканчик» 🙂
В степени окисления +6 соединения хрома проявляют выраженные окислительные свойства.
Железо
Является одним из самых распространенных элементов в земной коре (после алюминия), составляет 4,65% ее массы.
Для железа характерны две основные степени окисления +2, +3, +6.
Основными сплавами железа являются чугун и сталь. В стали содержание углерода менее 2%, меньше содержится P, Mn, Si, S. Чугун отличается бо́льшим содержанием углерода (2-6%), содержит больше P, Mn, Si, S.
Fe + S = FeS (t > 700°C)
Качественной реакцией на ионы Fe 2+ также является взаимодействие с щелочью (гидроксидом натрия). В результате выпадает осадок зеленого цвета.
Соединения железа (III) проявляют амфотерные свойства. Оксид и гидроксид железа (III) реагирует и с кислотами, и с щелочами.
Fe(OH)3 + KOH = K3[Fe(OH)6] (гексагидроксоферрат калия)
При сплавлении комплексные соли не образуются из-за испарения воды.
Качественной реакцией на ионы Fe 3+ является взаимодействие с желтой кровяной солью K4[Fe(CN)6]. В результате реакции образуется берлинская лазурь (прусский синий).
Реакция хлорида железа (III) с роданидом калия также является качественной, в результате нее образуется характерный раствор ярко красного цвета.
Ферраты можно получить в ходе электролизом щелочи на железном аноде, а также действием хлора на взвесь Fe(OH)3 в щелочи.
Один из первых металлов, освоенных человеком вследствие низкой температуры плавления и доступности получения руды.
Основные степени окисления меди +1, +2.
Пирометаллургический метод получения основан на получении меди путем обжига халькопирита, который идет в несколько этапов.
Медь, как малоактивный металл, выделяется при электролизе солей в водном растворе на катоде.
Во влажном воздухе окисляется с образованием основного карбоната меди.
При нагревании реагирует с кислородом, селеном, серой, при комнатной температуре с: хлором, бромом и йодом.
4Cu + O2 = (t) 2Cu2O (при недостатке кислорода)
2Cu + O2 = (t) 2CuO (в избытке кислорода)
Медь способна восстанавливать неметаллы из их оксидов.
Соединения меди I
В степени окисления +1 медь проявляет основные свойства. Соединения меди (I) можно получить путем восстановления соединений меди (II).
Оксид меди (I) можно восстановить до меди различными восстановителями: угарным газом, алюминием (алюминотермией), водородом.
Оксид меди (I) окисляется кислородом до оксида меди (II).
Оксид меди (I) вступает в реакции с кислотами.
Гидроксид меди CuOH неустойчив и быстро разлагается на соответствующий оксид и воду.
Соединения меди (II)
Степень окисления +2 является наиболее стабильной для меди. В этой степени окисления у меди есть оксид CuO и гидроксид Cu(OH)2. Данные соединения проявляют преимущественно основные свойства.
Оксид меди (II) получают в реакциях термического разложения гидроксида меди (II), реакцией избытка кислорода с медью при нагревании.
При нагревании гидроксид меди (II), как нерастворимое основание, легко разлагается на соответствующий оксид и воду.
Как сказано выше, гидроксид меди (II) носит преимущественно основный характер, однако способен проявлять и амфотерные свойства. В растворе концентрированной щелочи он растворяется, образуя гидроксокомлпекс.
© Беллевич Юрий Сергеевич 2018-2021
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.