Что включает в себя система координат
Система координат
В математике координаты — совокупность чисел, сопоставленных точкам многообразия в некоторой карте определённого атласа.
В элементарной геометрии координаты — величины, определяющие положение точки на плоскости и в пространстве. На плоскости положение точки чаще всего определяется расстояниями от двух прямых (координатных осей), пересекающихся в одной точке (начале координат) под прямым углом; одна из координат называется ординатой, а другая — абсциссой. В пространстве по системе Декарта положение точки определяется расстояниями от трёх плоскостей координат, пересекающихся в одной точке под прямыми углами друг к другу, или сферическими координатами, где начало координат находится в центре сферы.
В географии координаты выбираются как (приближённо) сферическая система координат — широта, долгота и высота над известным общим уровнем (например, океана). См. Географические координаты.
В астрономии небесные координаты — упорядоченная пара угловых величин (например, прямое восхождение и склонение), с помощью которых определяют положение светил и вспомогательных точек на небесной сфере. В астрономии употребляют различные системы небесных координат. Каждая из них по существу представляет собой сферическую систему координат (без радиальной координаты) с соответствующим образом выбранной фундаментальной плоскостью и началом отсчёта. В зависимости от выбора фундаментальной плоскости система небесных координат называется горизонтальной (плоскость горизонта), экваториальной (плоскость экватора), эклиптической (плоскость эклиптики) или галактической (галактическая плоскость).
Наиболее используемая система координат — прямоугольная система координат (также известная как декартова система координат).
Координаты на плоскости и в пространстве можно вводить бесконечным числом разных способов. Решая ту или иную математическую или физическую задачу методом координат, можно использовать различные координатные системы, выбирая ту из них, в которой задача решается проще или удобнее в данном конкретном случае. Известным обобщением системы координат являются системы отсчёта и системы референции.
В геометрия, а система координат это система, в которой используется один или несколько числа, или координаты, чтобы однозначно определить положение точки или другие геометрические элементы на многообразие такие как Евклидово пространство. [1] [2] Порядок координат имеет значение, и иногда они идентифицируются по их положению в упорядоченном кортеж а иногда и буквой, например, «the Икс-координата ». Координаты принимаются действительные числа в элементарная математика, но может быть сложные числа или элементы более абстрактной системы, такой как коммутативное кольцо. Использование системы координат позволяет преобразовать геометрические задачи в задачи о числах и наоборот; это основа аналитическая геометрия. [3]
Содержание
Общие системы координат
Числовая строка
Декартова система координат
Прототипным примером системы координат является Декартова система координат. в самолет, два перпендикуляр линии выбираются, а координаты точки принимаются как расстояние до линий со знаком.
В трех измерениях три взаимно ортогональный плоскости выбираются, и три координаты точки являются расстояниями со знаком до каждой из плоскостей. [5] Это можно обобщить для создания п координаты любой точки в п-мерное евклидово пространство.
В зависимости от направления и порядка осей координат трехмерная система может быть правша или левосторонняя система. Это одна из многих систем координат.
Полярная система координат
Цилиндрическая и сферическая системы координат
Есть два распространенных метода расширения полярной системы координат до трех измерений. в цилиндрическая система координат, а z-координата с тем же значением, что и в декартовых координатах, добавляется к р и θ полярные координаты, дающие тройную (р, θ, z). [7] Сферические координаты делают еще один шаг вперед, преобразовывая пару цилиндрических координат (р, z) в полярные координаты (ρ, φ) давая тройку (ρ, θ, φ). [8]
Однородная система координат
Другие часто используемые системы
Вот некоторые другие общие системы координат:
Есть способы описания кривых без координат, используя внутренние уравнения которые используют инвариантные величины, такие как кривизна и длина дуги. Они включают:
Координаты геометрических объектов
Системы координат часто используются для определения положения точки, но они также могут использоваться для определения положения более сложных фигур, таких как линии, плоскости, круги или сферы. Например, Координаты Плюккера используются для определения положения линии в пространстве. [10] Когда есть необходимость, для различения типа системы координат используется тип описываемой фигуры, например термин координаты линии используется для любой системы координат, определяющей положение линии.
Может оказаться, что системы координат для двух разных наборов геометрических фигур эквивалентны с точки зрения их анализа. Примером этого являются системы однородных координат точек и прямых на проективной плоскости. Две системы в таком случае называются дуалистический. Дуалистические системы обладают тем свойством, что результаты одной системы могут быть перенесены в другую, поскольку эти результаты представляют собой лишь разные интерпретации одного и того же аналитического результата; это известно как принцип двойственность. [11]
Трансформации
С каждым биекция из пространства в себя могут быть связаны два преобразования координат:
Например, в 1D, если отображение является сдвигом 3 вправо, первое перемещает начало координат от 0 до 3, так что координата каждой точки становится на 3 меньше, а второе перемещает начало координат от 0 до −3, так что координата каждого пункта становится еще 3.
Координатные линии / кривые и плоскости / поверхности
В двух измерениях, если одна из координат в системе координат точки остается постоянной, а другая координата может изменяться, то результирующая кривая называется координатная кривая. В декартовой системе координат координатные кривые фактически представляют собой прямые линии, таким образом координатные линии. В частности, это линии, параллельные одной из осей координат. Для других систем координат кривые координат могут быть кривыми общего вида. Например, координатные кривые в полярных координатах, полученные удерживанием р постоянными являются окружности с центром в начале координат. Система координат, для которой некоторые координатные кривые не являются линиями, называется криволинейная система координат. [12] Эта процедура не всегда имеет смысл, например, нет координатных кривых в однородная система координат.
Координатные карты
Координаты на основе ориентации
В геометрия и кинематика, системы координат используются для описания (линейного) положения точек и угловое положение топоров, плоскостей и твердые тела. [15] В последнем случае ориентация второй (обычно называемой «локальной») системы координат, привязанной к узлу, определяется на основе первой (обычно называемой «глобальной» или «мировой» системой координат). Например, ориентация твердого тела может быть представлена ориентацией матрица, который включает в свои три столбца Декартовы координаты из трех точек. Эти точки используются для определения ориентации осей локальной системы; они подсказки трех единичные векторы выровнен с этими осями.
Система координат — комплекс определений, реализующий метод координат, то есть способ определять положение и перемещение точки или тела с помощью чисел или других символов. Совокупность чисел, определяющих положение конкретной точки, называется координатами этой точки.
В математике координаты — совокупность чисел, сопоставленных точкам многообразия в некоторой карте определённого атласа.
В элементарной геометрии координаты — величины, определяющие положение точки на плоскости и в пространстве. На плоскости положение точки чаще всего определяется расстояниями от двух прямых (координатных осей), пересекающихся в одной точке (начале координат) под прямым углом; одна из координат называется ординатой, а другая — абсциссой. В пространстве по системе Декарта положение точки определяется расстояниями от трёх плоскостей координат, пересекающихся в одной точке под прямыми углами друг к другу, или сферическими координатами, где начало координат находится в центре сферы.
В географии координаты выбираются как (приближённо) сферическая система координат — широта, долгота и высота над известным общим уровнем (например, океана).
В астрономии небесные координаты — упорядоченная пара угловых величин (например, прямое восхождение и склонение), с помощью которых определяют положение светил и вспомогательных точек на небесной сфере. В астрономии употребляют различные системы небесных координат. Каждая из них по существу представляет собой сферическую систему координат (без радиальной координаты) с соответствующим образом выбранной фундаментальной плоскостью и началом отсчёта. В зависимости от выбора фундаментальной плоскости система небесных координат называется горизонтальной (плоскость горизонта), экваториальной (плоскость экватора), эклиптической (плоскость эклиптики) или галактической (галактическая плоскость).
Наиболее используемая система координат — прямоугольная система координат (также известная как декартова система координат).
Координаты на плоскости и в пространстве можно вводить бесконечным числом разных способов. Решая ту или иную математическую или физическую задачу методом координат, можно использовать различные координатные системы, выбирая ту из них, в которой задача решается проще или удобнее в данном конкретном случае. Известным обобщением системы координат являются системы отсчёта и системы референции.
Система координат — комплекс определений, реализующий метод координат, то есть способ определять положение и перемещение точки или тела с помощью чисел или других символов. Совокупность чисел, определяющих положение конкретной точки, называется координатами этой точки.
В математике координаты — совокупность чисел, сопоставленных точкам многообразия в некоторой карте определённого атласа.
В элементарной геометрии координаты — величины, определяющие положение точки на плоскости и в пространстве. На плоскости положение точки чаще всего определяется расстояниями от двух прямых (координатных осей), пересекающихся в одной точке (начале координат) под прямым углом; одна из координат называется ординатой, а другая — абсциссой. В пространстве по системе Декарта положение точки определяется расстояниями от трёх плоскостей координат, пересекающихся в одной точке под прямыми углами друг к другу, или сферическими координатами, где начало координат находится в центре сферы.
В географии координаты выбираются как (приближённо) сферическая система координат — широта, долгота и высота над известным общим уровнем (например, океана).
В астрономии небесные координаты — упорядоченная пара угловых величин (например, прямое восхождение и склонение), с помощью которых определяют положение светил и вспомогательных точек на небесной сфере. В астрономии употребляют различные системы небесных координат. Каждая из них по существу представляет собой сферическую систему координат (без радиальной координаты) с соответствующим образом выбранной фундаментальной плоскостью и началом отсчёта. В зависимости от выбора фундаментальной плоскости система небесных координат называется горизонтальной (плоскость горизонта), экваториальной (плоскость экватора), эклиптической (плоскость эклиптики) или галактической (галактическая плоскость).
Наиболее используемая система координат — прямоугольная система координат (также известная как декартова система координат).
Координаты на плоскости и в пространстве можно вводить бесконечным числом разных способов. Решая ту или иную математическую или физическую задачу методом координат, можно использовать различные координатные системы, выбирая ту из них, в которой задача решается проще или удобнее в данном конкретном случае. Известным обобщением системы координат являются системы отсчёта и системы референции.
Система координат, виды и классификация
Пойдем прямым логическим путем, не отвлекаясь на многие современные международные и отечественные научные термины. Систему координат можно изобразить как некую систему отсчета ориентированную на плоскости двумя направлениями, а в пространстве тремя. Если вспомнить математическую систему, то она представлена двумя взаимно перпендикулярными направлениями, имеющими названия осей абсцисс (X) и ординат (Y). Ориентированы они в горизонтальном и вертикальном направлениях соответственно. Пересечение этих линий является началом координат с нулевыми значениями в абсолютной величине. А местоположение точек на плоскости определяется при помощи двух координат X и Y. В геодезии ориентирование осей на плоскости отличается от математики. Плоскостная прямоугольная система определена осью X в вертикальном положении (в направлении на север) и осью Y в горизонтальном (в направлении на восток).
Классификация систем координат
В геодезии все системы координат можно представить в виде двух групп:
В обеих группах выделяют как плоские (двухмерные), так и пространственные (трехмерные) системы.
К прямолинейным прямоугольным системам относятся цилиндрическая проекция Гаусса-Крюгера, индивидуальные референцные и местные системы координат.
К полярным системам можно отнести географическую, астрономическую и геодезическую, геоцентрические и топоцентрические системы.
Географическая система координат
Замкнутая поверхность внешнего контура Земли представлена сфероидной геометрической формой. За основные направления ориентирования на ней можно принять дуги на поверхности шара. На упрощенно представленном уменьшенном макете нашей планеты в виде глобуса (фигура земли) можно зрительно увидеть принятые линии отсчета в виде Гринвичского меридиана и экваториальной линии.
В этом примере выражена общепринятая во всем мире именно пространственная система географических координат. В ней введены понятия долготы и широты. Имея градусные единицы измерения, они представляют угловую величину. Многим знакомы их определения. Следует напомнить, что географическая долгота конкретной точки представляет угол между двумя плоскостями, проходящими через нулевой (Гринвичский) меридиан и меридиан в определяемой точке расположения. Под географической широтой точки принят угол, образующийся между отвесной линией (или нормалью) к ней и плоскостью экватора.
Понятия астрономической и геодезической системы координат и их различия
Географическая система условно объединяет астрономическую и геодезическую системы. Для того чтобы было понятно какие все-таки существуют различия обратите внимание на определения геодезических и астрономических координат (долготы, широты, высоты). В астрономической системе широта рассматривается как угол между экваториальной плоскостью и отвесной линией в точке определения. А сама форма Земли в ней рассматривается как условный геоид, математически приближенно приравненный к сфере. В геодезической системе широта образовывается нормалью к поверхности земного эллипсоида в конкретной точке и плоскостью экватора. Третьи координаты в этих системах дают окончательное представление в их различиях. Астрономическая (ортометрическая) высота представляет собой превышение по отвесной линии между фактической и точкой на поверхности уровенного геоида. Геодезической высотой считается расстояние по нормали от поверхности эллипсоида до точки вычисления.
Система плоских прямоугольных систем координат Гаусса-Крюгера
Каждая система координат имеет свое теоретическое научное и практическое экономическое применение, как в глобальном, так и региональном масштабах. В некоторых конкретных случаях возможно использование референцных, местных и условных систем координат, но которые через математические расчеты и вычисления все равно могут быть объединены между собой.
Геодезическая прямоугольная плоская система координат является проекцией отдельных шестиградусных зон эллипсоида. Вписав эту фигуру внутрь горизонтально расположенного цилиндра, каждая зона отдельно проецируется на внутреннюю цилиндрическую поверхность. Зоны такого сфероида ограничиваются меридианами с шагом в шесть градусов. При развертывании на плоскости получается проекция, которая имеет название в честь немецких ученых её разработавших Гаусса-Крюгера. В таком способе проецирования углы между любыми направлениями сохраняют свои величины. Поэтому иногда ее называют еще равноугольной. Ось абсцисс в зоне проходит по центру, через условный осевой меридиан (ось X), а ось ординат по линии экватора (ось Y). Длины линий вдоль осевого меридиана передается без искажений, а вдоль экваториальной линии с искажениями к краям зоны.
Полярная система координат
Кроме выше описанной прямоугольной системы координат следует отметить наличие и использование в решении геодезических задач плоской полярной системы координат. За исходное отсчетное направление в ней применяется ось северного (полярного) направления, откуда и название. Для определения местоположения точек на плоскости используют полярный (дирекционный) угол и радиус-вектор (горизонтальное проложение) до точки. Напомним, что дирекционным углом считается угол, отсчитываемый от исходного (северного) направления до определяемого. Радиус-вектор выражается в определении горизонтального проложения. К пространственной полярной системе добавляется геодезические измерения вертикального угла и наклонного расстояния для определения 3D-положения точек. Этот способ практически ежедневно применяется в тригонометрическом нивелировании, топографической съемке и для развития геодезических сетей.
Геоцентрические и топоцентрические системы координат
По такому же полярному методу частично устроены и спутниковые геоцентрическая и топоцентрическая системы координат, с той лишь разницей, что основные оси трехмерного пространства (X, Y, Z) имеют отличные начала и направления. В геоцентрической системе началом координат является центр масс Земли. Ось X имеет направление по Гринвичскому меридиану к экватору. Ось Y располагают в прямоугольном положении на восток от X. Ось Z изначально имеет полярное направление по малой оси эллипсоида. Координатами в ней считаются:
При наблюдении за движением спутников из точки стояния на земной поверхности используют топоцентрическую систему, оси координат которой расположены параллельно осям геоцентрической системы, а ее началом считается пункт наблюдения. Координаты в такой системе:
В современные спутниковые глобальные системы отсчета WGS-84, ПЗ-90 входят не только координаты, но и другие параметры и характеристики важные для геодезических измерений, наблюдений и навигации. К ним относятся геодезические и другие константы:
Система координат в математике с примерами решения и образцами выполнения
Система координат — комплекс определений, реализующий метод координат, то есть способ определять положение и перемещение точки или тела с помощью чисел или других символов. Совокупность чисел, определяющих положение конкретной точки, называется координатами этой точки. В математике координаты — совокупность чисел, сопоставленных точкам многообразия в некоторой карте определённого атласа.
Координаты на прямой
Если на прямой задано направление, то такую прямую называют направленной, а выбранное направление — положительным. Например, на горизонтальной прямой можно отметить направление вправо, тогда будем говорить, что направленная прямая имеет положительное направление вправо. Можно с таким же правом считать положительным и направление влево. Направление прямой будем указывать стрелкой (рис. 1).
Выберем на направленной прямой точку, которую назовем началом отсчета или началом координат, и будем обозначать ее буквой О.
Кроме того, выберем отрезок, длину которого будем считать единицей длины. Этот отрезок назовем единицей масштаба.
Определение:
Прямая линия, на которой указаны: начало отсчета, единица масштаба и направление отсчета, называется осью координат.
Рассмотрим отрезок, расположенный на оси координат. Если одну из точек, ограничивающих отрезок, назовем началом отрезка, а другую—его концом, то отрезок будем называть направленным отрезком. Направленный отрезок обозначают двумя буквами, например: АВ, СМ, КР, причем на первом месте ставят букву, обозначающую начало, на втором—букву, обозначающую конец. Таким образом, запись АВ показывает, что начало отрезка есть точка А, а конец — точка В. Направление отрезка считается от начала к концу.
Если направление отрезка совпадает с направлением оси, то отрезок называют положительно направленным; если же его направление противоположно направлению оси, то — отрицательно направленным. Таким образом, отрезки АВ и ВА имеют противоположные направления. Это записывают так:
Отметим, что положительный отрезок может находиться в любом месте координатной оси, только его направление должно совпадать с направлением оси.
Сложение направленных отрезков производится по следующему правилу:
Для того чтобы сложить два направленных отрезка, нужно к концу первого приложить начало второго; тогда отрезок, имеющий началом начало первого отрезка и концом конец второго, называют суммой двух направленных отрезков.
Из этого определения вытекает, что сумма отрезков АВ и ВС равна отрезку АС при любом расположении точек А, В, С, т. е. всегда:
Координатным отрезком точки А называется направленный отрезок, имеющий начало в точке О (т. е. в начале координат), а концом — рассматриваемую точку А.
Всякий направленный отрезок, лежащий на оси, можно выразить через координатные отрезки его начала и конца. В самом деле, рассмотрим направленный отрезок АВ. На основании равенства (2) можно написать
(здесь вместо точки В поставлена точка О, а вместо точки С точка В) или
Отрезок ОВ есть координатный отрезок (его начало есть точка О), но отрезок АО не является координатным, поскольку его начало не является началом координат. Но в силу равенства (1)
поэтому можно написать
Получен следующий результат:
Направленный отрезок равен разности координатного отрезка его конца и координатного отрезка его начала.
Это верно для любого отрезка, лежащего на координатной оси.
Теперь дадим одно из самых важных определений: Координатой точки на координатной оси называется число, равное по абсолютной величине длине координатного отрезка этой точки и по знаку совпадающее со знаком координатного отрезка.
Точку А, имеющую координатной число х, будем обозначать А (х).
Указанные на рис. 4 точки имеют следующие координаты:
Будем также писать
Если даны точки А(х1) и В(х2), то на основании формул (3) и (4) получим
т. е. направленный отрезок равен разности координат его конца и начала.
Отсюда сразу получаем, что длина отрезка равна абсолютной величине разности координат его конца и начала.
Длину отрезка будем обозначать, пользуясь знаком | |, т. е. знаком абсолютной величины. Таким образом, длина отрезка АВ будет записываться так:
Пример:
Если даны точки А (+4), В (+8), то отрезок АВ = (+8) — (+4), а его длина |АВ|= |+ 4 | = 4.
Если даны точки М (+5) и Р (+3), то отрезок МР = (+3)—(+5) = —2, а его длина |МР| = | —2| = 2. Даны две точки: Q (+ 3) и S (—4). Длина отрезка
Даны две точки R (— 6) и Т (—2); отрезок RТ = ( — 2) — (—6) = +4, а его длина | RТ | = 4.
Пример:
Начало отрезка АВ находится в точке А (—950), а конец—в точке В ( —1200); найти его направление и длину.
Отрезок АВ = ( — 1200)—( — 950) = —250. Так как он
получился отрицательным, то его направление противоположно направлению оси. Его длина равна | АВ | = | —250 | = 250.
Задача:
На координатной оси даны две точки: A (x1) и В (x2) Найти точку С, лежащую между ними и делящую отрезок АВ в отношении т : п.
Чтобы найти точку, надо найти ее координату. По условию задачи должно быть
Обозначая координату искомой точки С через х и выражая отрезки через координаты, т. е. применяя формулу (5), получим, что АС = х—х1, СВ = х2 — х. Подставляя эти выражения в равенство (6), будем иметь
Решая последнее уравнение относительно х, найдем:
Это и есть координата искомой точки.
Пример:
Найти точку С, делящую отрезок АВ в отношении 1:2, если даны начало отрезка А (+ 3) и конец В ( + 5) (рис. 5).
Здесь т = 1, п = 2, х1=-3, х2 = 5. Применяя формулу (7), получим
Пример:
Найти точку М, делящую расстояние между точками Р ( — 2) и Q (—9) в отношении 3:4 (рис. 5). Здесь т = 3, п = 4, х1 = —2, х2 = —9. По формуле (7) находим
Если т = n т. е. точка С делит отрезок АВ пополам, тогда формула (7) перепишется так:
Таким образом, координата точки, делящей отрезок пополам, равна средней арифметической координат его начала и конца.
Пример:
Найдем середину отрезка, заключенного между точками А (—6) и B (4) (рис. 6).
Применяя формулу (8), получим, что
Координаты на плоскости
Возьмем на плоскости две взаимно перпендикулярные прямые, пересекающиеся в точке О. На каждой из этих прямых зададим направление, указав его стрелкой (рис. 7).
Установим масштаб, общий для обеих прямых, а за начало отсчета выберем точку О.
Определение:
Координатными осями на плоскости называются две взаимно перпендикулярные прямые, на которых установлены: 1) на-правления, 2) масштаб и 3) общая точка отсчета.
Назовем одну из осей осью Ох или осью абсцисс, другую — осью Оу или осью ординат. Точку их пересечения назовем началом координат.
Возьмем произвольную точку M, лежащую на плоскости, и опустим из нее перпендикуляры на оси координат, т. е. найдем ее проекции на оси. Обозначим проекцию на ось Ох через А, а проекцию на ось Оу через В. Обозначим координату точки А (по оси Ох) через х, а координату точки В (по оси Оу) через у. Введем определение:
Определение:
Абсциссой точки называется координата ее проекции на ось Ох. Ординатой точки называется координата ее проекции на ось Оу.
Абсциссу точки обычно обозначают буквой х, ординату— буквой у. Точку М, имеющую абсциссу х и ординату у, обозначают следующим образом: пишут скобку и в ней на первом месте ставят абсциссу, на втором ординату и разделяют эти два числа запятой или точкой с запятой. Таким образом, запись точки выглядит так: М(х, у).
Координатные оси разделяют плоскость на четыре части, которые называют четвертями.
Первой четвертью называется та часть плоскости, в которой абсцисса и ордината положительны.
Второй четвертью — та часть, в которой абсцисса отрицательна, а ордината положительна.
Пример:
Найти точку Р( — 4, 2) (рис. 9), Возьмем на оси Ох точку А с координатой —4, ее координатный отрезок ОА = —4. На оси Оу возьмем точку В с координатным отрезком ОВ= 2. Восставим перпендикуляры к осям из точек А и В, точка их пересечения и даст искомую точку Р.
Задача:
Найти расстояние между точками Р (х1, у1) и Q( х1, у1 ). Иначе говоря, нужно найти длину отрезка РQ(рис. 10).
Обозначим проекцию точки Р на ось Ох через А1, а ее проекцию на ось Оу — через В1. Проекцию точки Q на ось Ох обозначим через А2 и через В2— ее проекцию на ось Oy. Тогда ОА1 = х1, ОВ1 = y1, ОА2 = х2, ОВ2 = у2. Из точки Р проведем прямую, параллельную оси Ох, до пересечения с прямой A2Q в точке К. Рассмотрим треугольник PKQ. По теореме Пифагора имеем
Но РК = А1А2, KQ = B1B2, как противоположные стороны прямоугольников; кроме того, на основании формулы (3 из § 1) направленные отрезки А1А2 и В1В2 будут равны
Подставляя полученные выражения в (*), получим
т. е. расстояние между двумя точками равно корню квадратному из суммы квадратов разностей координат.
Примечание:
Расстояние между двумя точками, так же как длина отрезка, всегда положительно, поэтому в формуле (1) перед квадратным корнем берут только знак плюс.
Пример:
Найти расстояние между точками Р (— 2, — 1) и Q (2, 2). Применяя формулу (1), получим
Пример:
Найти длину отрезка MN, если даны М (8, 2) и N(2, 10). Применяя формулу (1), получим
Задача:
Найти точку С, делящую отрезок PQ в отношении т : п, если известны координаты точек Р (х1, у1) и Q (х2, у2). По условию задачи надо найти такую точку С, чтобы было выполнено равенство
Решение:
Так как прямые А1Р, АС и А2Q параллельны между собой, то на основании теоремы о пропорциональных отрезках можно записать, что
Но А1А = ОА — ОА1 = х—х1, АА2 = ОА2 — ОА = х2—х; поэтому, подставляя в равенство (*), будем иметь уравнение
решая которое найдем абсциссу точки С:
Рассуждая аналогично о проекциях на ось Оу, т. е. о точках В1, В и В2, получим ординату точки С, делящей отрезок в отношении т : п,
Итак, искомая точка С имеет координаты, определяемые равенствами (2) и (3).
Пример:
Найти точку, делящую в отношении 1:2 отрезок PQ, где Р (4, —3) и Q (8, 0). Здесь х1 = 4, у1 = — 3, х2 = 8, у2 = 0, т = 1, п = 2. Применяя формулы (2) и (3), получим:
Пример:
Найти точку, делящую расстояние между точками А (4, 2) и B (8, 10) в отношении 3 : 1. Здесь х1=-4, у1 = 2, х2 = 8, у2= 10, т = 3, п = 1. По формулам (2) и (3) находим:
Следствие (из формул (2) и (3)). Если точка С делит отрезок РQ пополам, то т = n, поэтому
т. е. абсцисса середины отрезка равна средней арифметической абсцисс его начала и конца; ордината середины отрезка равна средней арифметической ординат его начала и конца.
Задача:
Даны три вершины треугольника: А (7, 0), В (4, 4) и С (7, 10). Найти длину биссектрисы угла A (рис. 12).
Найдем длины сторон АВ и АС. Для этого применим формулу (1):
Обозначим точку пересечения биссектрисы угла А с противоположной стороной ВС через М, а ее координаты—через х и у. Помня, что биссектриса внутреннего угла треугольника делит противоположную сторону на отрезки, пропорциональные прилежащим сторонам, можно утверждать, что точка М делит отрезок ВС в отношении 5 : 10 = ; поэтому, применяя формулы (2) и (3), получим:
Теперь вычисляем длину биссектрисы между точками А(7, 0) и М(5, 6):
Задача:
Найти точку пересечения медиан треугольника, вершинами которого являются точки А(4, 6), В(—8, 10), С( —2, —6) (рис. 13).
Точка пересечения медиан делит каждую из медиан в отношении 2:1, считая от вершины треугольника. Обозначим через М середину стороны АС; по формулам (4) и (5) можно найти ее координаты:
т. е. М(19 0). Точка Р пересечения медиан делит отрезок ВМ в отношении 2:1, поэтому ее координаты найдутся по формулам (2)
Итак, искомая точка
Задача:
Записать условие того, что точка М (х, у) находится на расстоянии По формуле (1) имеем
или, возводя обе части равенства в квадрат, получим
Это равенство есть уравнение с двумя неизвестными х и у. Этому уравнению удовлетворяют координаты любой точки, лежащей на расстоянии 5 от точки С. Иначе говоря, ему удовлетворяют координаты любой точки, принадлежащей геометрическому месту точек, расстояние которых от точки С равно 5. Это геометрическое место есть окружность.
Следовательно, можно сказать, что уравнение (*) есть уравнение окружности с центром в точке С и радиуса 5.
В следующих главах будут рассмотрены уравнения с двумя неизвестными х и у и те линии (геометрические места), точки которых имеют координаты, удовлетворяющие этим уравнениям.
Числовая ось
Числовой осью называют направленную прямую, на которой указывается начальная точка О и задается некоторый «эталон» длины Е. Каждой точке этой прямой отвечает вещественное число, равное длине отрезка
если
расположено правее точки О, и равное этой
длине со знаком минус — в противном случае (см. рис. 1 а). Числовую ось будем обозначать (смысл этого обозначения прояснится ниже).
Указанное соответствие между точками числовой оси и множеством вещественных чисел
является взаимно однозначным, т. е. каждой точке
соответствует единственное число
, обратно, каждому числу
соответствует единственная точка
Таким образом, множество
. вещественных чисел можно отождествлять с числовой осью
, чем мы будем впредь постоянно пользоваться.
Декартова система координат
Декартовой (прямоугольной) системой координат на плоскости называют две взаимно перпендикулярные числовые оси и
, имеющие общее начало О и одинаковые единицы масштаба (см. рис. 1 б). Ось
называют осью абсцисс, а ось
— осью ординат. Плоскость
называют координатной плоскостью и обозначают
Пусть М — произвольная точка координатной плоскости. Опустим из нее перпендикуляры МА и МВ на оси и
соответственно. Декартовыми координатами точки М называют числа, которым соответствуют точки А к В. Например, точка
имеет декартовы координаты
что записывается в виде
Точка О имеет координаты (0,0).
Полярная система координат
В плоскости зададим луч — полярную ось, выходящий из точки О — полюса полярной системы координат (см. рис. 2 а). Произвольная точка М плоскости определяется парой чисел
называемой ее полярными координатами, где р — длина отрезка ОМ, а
— выраженный в радианах угол между ОМ и осью
. Угол в считается положительным, если откладывается против часовой стрелки, и отрицательным в противоположном случае. Точка О имеет полярные координаты
где
— любой угол.
Полярные и декартовы координаты, заданные на одной плоскости (см. рис. 2 6), связаны очевидными равенствами:
Системы координат в пространстве
Декартова система координат в пространстве определяется тремя взаимно перпендикулярными осями ,
и
, называемыми соответственно осями абсцисс, ординат и аппликат (см. рис. 4 а). Проcтранство
обозначают
. Положение точки М в
определяется тройкой чисел
Аналогами полярной системы координат в пространстве служат цилиндрическая и сферическая системы координат.
Цилиндрическая система координат (рис. 4 б) представляет собой объединение полярной системы координат в плоскости с аппликатой z:
где
Сферическая система координат (рис. 4 в) связана с декартовой системой равенствами
где
Пространство
Пространство
На плоскости и в пространстве положение точки в декартовых координатах полностью определяется соответственно, парой и тройкой чисел вида [) и (x,y,z). Желая обобщить эти геометрические подходы, в анализе вводят понятие пространства
Упорядоченную систему из вещественных чисел
называют
-мерной точкой, а множество всех
-мерных точек называют
—мерным пространством
или короче — пространством
.
Понятие пространства естественно дополнить понятиями основных операций над его элементами. По определению полагают
Наконец, обобщая известную из аналитической геометрии формулу, определяют расстояние между двумя точками и
Прямую, плоскость и пространство можно рассматривать как пространства ,
и
соответственно. Ниже это будет практиковаться постоянно.
Решение заданий и задач по предметам:
Дополнительные лекции по высшей математике:
Образовательный сайт для студентов и школьников
Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.
© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института