Что включает состав системы движений в биомеханике
Структура системы движения
Движения согласованы в пространстве и во времени; силы, приложенные к кинематическим цепям тела, находятся в известных соотношениях.
Объединенные в систему элементы получают новые свойства. Так, например, из усилий многих мышц складывается общая сила действия человека. Совместное участие мышц в наращивании скорости в биокинематической цепи создает новые скоростные возможности. По мере совершенствования системы движений все больше проявляются ее системные свойства. Каждый элемент в отдельности не обладает такими свойствами. Они проявляются в системе благодаря взаимодействиям в ней.
При изучении системы движений выявляют следующие основные виды ее структуры.
Двигательная структура — это закономерности взаимосвязи движений в пространстве и времени (кинематическая структура), а также силовых и энергетических взаимодействий (динамическая структура) в системе движений.
В первую очередь поддаются наблюдению форма и характер движений, внешняя их картина. По кинематическим характеристикам (пространственным, временным, пространственно-временным) устанавливают кинематическую структуру.
При обучении физическим упражнениям в первую очередь стараются установить кинематическую структуру, найти общую организацию движений, т.е. описать их.
Динамическая структура — это закономерности силового (динамического) взаимодействия частей тела человека друг с другом и внешними телами (среда, опора, снаряды, партнеры, противники).
Изучая динамические характеристики движений, определяя приложенные силы, инерционные сопротивления, исследуют причины той или иной картины движений. По динамическим характеристикам устанавливают динамическую структуру.
Определяя массы тел и их распределение (инерционные характеристики), а также меры взаимодействия тел (силы и момент силы), можно исследовать силовые взаимодействия. Это значит, что можно определить источники сил, их величину, направление, место приложения, меру их действия (импульс силы и работу), результат их действия.
Когда рассматривают совместное приложение ряда сил к звеньям тела, оценивают их взаимное влияние, эффект совместного воздействия, то определяют силовую структуру.При изучении мышечных сил, их совместного действия, сложных отношений, возникающих внутри групп мышц и между их группами, определяют анатомическую структуру. Особое внимание уделяется тому, как посредством мышечных сил согласовать действие остальных сил и использовать их.
Информационные структуры — это закономерности взаимосвязей между элементами информации (сообщениями об условиях и ходе действия и командами), без которых невозможно управление движениями.
Кинематические и динамические структуры сами имеют определенное информационное значение и связаны между собой соответствующими информационными структурами.
Все воздействия, отражаясь в сознании человека, сочетаются со следами в его памяти. Так образуется психологическая структура двигательного навыка. В нее входят знания и представления о собственной технике, технике других спортсменов, общих требований к ней и т.п.
Команды, которые мозг направляет мышцам и другим органам, обеспечивающим выполнение движений, составляют эффекторную структуру.Она во многом зависит от соотношения произвольного и автоматического управления в системе движений.
Обобщенные структуры — это закономерности взаимосвязей разных сторон действия; обобщенные структуры обусловлены сочетанием разных видов структур (чаще всего ритмических, фазовых и координационных).
Ритмические структуры — это закономерности взаимосвязей движений во времени, соотношение длительностей частей движений, всего двигательного акта или действий. От того, как размещены во времени акценты усилий,зависит скорость и длительность последующих движений. Части движений различаются по направлению, скорости, ускорению, усилию. Ритмические же соотношения измеряются только показателями времени. Ритмические структуры служат особо отчетливыми показателями совершенства упражнений.
ДВИГАТЕЛЬНЫЕ ДЕЙСТВИЯ КАК СИСТЕМЫ ДВИЖЕНИЙ. ПРАВЛЕНИЕ ДВИГАТЕЛЬНЫМИ ДЕЙСТВИЯМИ КАК СИСТЕМАМИ
1. Состав системы движения
В системе движений пространственные, временные и динамические элементы объединяются в подсистемы высшего порядка и системы.
Позу тела определяют по взаимному расположению его биозвеньев относительно друг друга в соматической системе отсчета.
Различают позы: прогнувшись; согнувшись; в группировке; широкая стойка ноги врозь; выпад с наклоном; основная стойка руки в стороны, вперед, на пояс и др.
Некоторые физические упражнения исполняются без изменения положения и позы при произвольном сохранении неподвижного состояния тела в соматической системе отсчета (стойка в прямолинейном движении при спусках на лыжах, равновесия, положение тела при спрыгивании с высоты и др.)
Движения в суставах ограничены суставными сумками, связками, сухожилиями, мышцами и происходят по дугам окружностей вокруг суставных осей. Поэтому в каждом суставе количество простых двигательных задач, решаемых суставными движениями, зависит от количества степеней свободы движений. В одноосных суставах (межфаланговые) с одной степенью свободы происходит сгибание и разгибании; в двуосных (лучезапястный, локтевой, голеностопный, коленный) с двумя степенями свободы возможны сгибание и разгибание, отведение и приведение, пронация и супинация; в трехосных суставах (плечевой, тазобедренный) с тремя степенями свободы решаются задачи сгибания и разгибания, отведения и приведения, пронации и супинации или исполнения круговых движений.
Пространственные образующие элементы объединяются в пространственные подсистемы высшего порядка, что положительно сказывается на возможности людей совершать различные движения. Так в двигательной деятельности человека суставные движения объединяются в группы одновременных, ряды последовательных и поочередных движений. Благодаря этому объединению количество степеней свободы биозвеньев тела увеличивается и этим обеспечивается возможность решения любых двигательных задач.
Одновременные движения используются в разных суставах в одно и то же время. Например, движение в суставах маховой ноги и рук при отталкивании в прыжках в длину с разбега.
Последовательные движения характеризуются тем, что исполнение последующего движения биозвеньев в одних суставах начинается тогда, когда предыдущие движения биозвеньев в других суставах еще не закончены. Например, для создания непрерывной тяги при плавании кролем, гребковые движения руками исполняются последовательно, «наслаиваясь» одно на другое.
Поочередные движения происходят в разных суставах, следуют поочередно одно за другим. Например, при исполнении подъема разгибом на брусьях, разгибание в тазобедренных суставах из положения упора на руках согнувшись, притормаживание ног и разгибание рук в плечевых суставах при выходе в упор происходят поочередно.
С возрастанием количества участвующих в двигательной деятельности человека суставных движений, количество степеней свободы подвижных звеньев его тела может увеличиваться до ста и более. Это обуславливает практически неограниченные двигательные возможности человека. Мерами пространственных образующих элементов являются пространственные характеристики (координата, перемещение, траектория).
К временным образующим элементам относятся фазы, периоды, циклы.
Фаза — это наименьший временной элемент, обеспечивающий решение определенной двигательной задачи.
Например, при отталкивании прыжка в длину с разбега в фазе амортизации решается задача подготовки к отталкиванию за счет изменения направления скорости и наращивание силы упругой деформации растягивающихся мышц. В фазе отталкивания решается задача сообщения предельного ускорения ОЦМ тела ученика в направлении вылета путем преодоления моментов инерции ускоряемых биозвеньев быстрым сокращением ранее растянутых мышц.
В движениях человека фазы объединяются во временные подсистемы движений: периоды и циклы.
За цикл принимают и одноактные двигательные действия. Например, метание, прыжок, подъем, спад, переворот, оборот и др.
Для оценки временных образующих элементов и подсистем движений в педагогической практике используют меры их измерения: момент времени, длительность движения, темп и ритм.
По двигательным задачам динамические образующие элементы разделяют на фазы энергообеспечиваюцих и энер-гокорректирующих движений.
Энергообеспечивакщие движения решают задачу накопления механической энергии биозвеньями, биокинематическими цепями и всем телом человека в биодинамической основе двигательного действия.
Мерами взаимодействия энергообеспечивающих и энер-гокорректирующих движений будут количество движения (в поступающем движении) и кинетический момент (во вращательном движении).
Элементы в подсистемах, а подсистемы в системе движений находятся во взаимосвязях, которые обуславливают структуру. Взаимодействия внутри каждой подсистемы и между подсистемами не только существуют, но и развиваются.
Внутренние взаимодействия обуславливают целостность системы. Движения в системе согласованы в пространстве и во времени; силы, приложенные к кинематическим цепям тела, находятся в известных соотношениях.
Объединенные в систему элементы получают новые свойства. Так, например, из усилий многих мышц складывается общая сила действия человека. Совместное участие мышц в наращивании скорости в биокинематической цепи создает новые скоростные возможности. По мере совершенствования системы движений все больше проявляются ее системные свойства. Каждый элемент в отдельности не обладает такими свойствами. Они проявляются в системе благодаря взаимодействиям в ней.
При изучении системы движений выявляют следующие основные виды ее структуры.
В первую очередь поддаются наблюдению форма и характер движений, внешняя их картина. По кинематическим характеристикам (пространственным, временным, пространственно-временным) устанавливают кинематическую структуру.
При обучении физическим упражнениям в первую очередь стараются установить кинематическую структуру, найти обшую организацию движений, т.е. описать их.
Изучая динамические характеристики движений, определяя приложенные силы, инерционные сопротивления, исследуют причины той или иной картины движений. По динамическим характеристикам устанавливают динамическую структуру.
Кинематические и динамические структуры сами имеют определенное информационное значение и связаны между собой соответствующими информационными структурами.
В информационной структуре выделяют сенсорные структуры- синтезы чувствительных сигналов, переработанные и обобщенные. Они отражают воздействия внешних факторов и внутреннего состояния организма.
Команды, которые мозг направляет мышцам и другим органам, обеспечивающим выполнение движений, составляют эффекторную структуру. Она во многом зависит от соотношения произвольного и автоматического управления в системе движений.
Ритмические структуры — это закономерности взаимосвязей движений во времени, соотношение длительностей частей движений, всего двигательного акта или действий. От того, как размещены во времени акценты усилий, зависит скорость и длительность последующих движений. Части движений различаются по направлению, скорости, ускорению, усилию. Ритмические же соотношения измеряются только показателями времени. Ритмические структуры служат особо отчетливыми показателями совершенства упражнений.
Для того, чтобы физические упражнения достигали поставленной цели, их надо выполнять правильно, совершенно. Совершенство выполнения зависит от управления движениями. Физические упражнения в биомеханике изучаются как система движений, управляемая человеком. Для лучшего овладения физическими упражнениями надо знать, как организовано управление системой движений и какие изменения происходят при формировании и совершенствовании системы движений.
Информация в системе движений —это сообщения о состоянии и изменениях внешнего окружения и организма, а также команды подсистемам исполнения и обеспечения.
Передача информации в самоуправляемой системе
Предварительная информация отражает состояние системы и ее окружения до рассматриваемого действия, обеспечивает подготовку к нему.
Управление как способ достижения цели возможно лишь тогда, когда эта цель имеется. В двигательных действиях целью управления служит двигательная задача.
Задача может быть поставлена извне и заранее (требования соревнований, задание тренера). Она может возникнуть произвольно у самого спортсмена. Могут быть такие сочетания внешних и внутренних причин, которые вызывают изменение двигательной задачи или появление новой.
Всегда в ее формировании так или иначе участвует информация: а) о внешнем окружении, в котором надо выполнять задачу; б) о состоянии готовности спортсмена; в) о прошлом опыте (информация, извлеченная из памяти). Будущее формируется на основе настоящего и прошлого.
Программа управления — это выработанные состав и последовательность движений, целесообразных в конкретных условиях при решении поставленной двигательной задачи.
В процессе физического воспитания развиваются двигательные качества, формируются двигательные навыки, создаются возможности решения двигательных задач. С точки зрения управления движениями занятия физическими упражнениями обеспечивают накопление множества программ, накопление двигательных возможностей.
Контроль над выполнением программы осуществляется при помощи сигналов обратной связи, обеспечивающих слежение, сличение, поправки, перестройки и др. процессы.
В этом контроле при выполнении физических упражнений крайне важное место занимает самоконтроль на основе отчетливых двигательных представлений.
Все воздействия на движения можно разделить на управляющие и сбивающие.
Даже при самом совершенном повторении упражнения под влиянием помех возникают отклонения. Это могут быть отклонения в разных характеристиках, у разных звеньев тела, в разные фазы движений. Всегда наблюдается изменчивость движений в виде неповторимости характеристик, их разброса. Изменчивость можно рассматривать как приспособительную, случайную и коррекционную.
Приспособительная изменчивость характеризуется предварительными изменениями системы движений, которые соответствуют переменным условиям. В этом случае управляющие воздействия заранее приспосабливаются к предстоящим условиям действия, т.е. происходит подготовка к встрече с помехами, и отклонения не наступают. Здесь важно успеть подготовиться и точно дозировать необходимое изменение. Однако само приспособление представляет уже какое-то изменение выполняемой программы. Это хотя и частичное, но все-таки тоже отклонение, и оно должно быть возмещено.
Случайная изменчивость вызвана возмущениями, не предвиденными полностью, т.е. возникает тогда, когда приспособительная изменчивость недостаточна, не обеспечивает нейтрализации помех в переменных условиях. Отклонения, мешающие достижению цели, существенные. Это недостатки и ошибки в выполнении упражнений. Большое количество отклонений можно считать несущественными, поскольку они не нарушают в целом правильности движений, не снижают эффективности упражнений, безразличны для результата.
Коррекционная изменчивость характеризуется изменениями для исправления возникающих отклонений. Это те изменения в управлении движениями, которые приостанавливают начавшееся случайное существенное отклонение и далее направлены на восстановление правильного выполнения программы. В основе коррекции лежит сличение заданной программы с текущим выполнением движений, выявление отклонений и их устранение. Для этого необходима программа, продиктованная двигательной задачей, и информация по каналам обратной связи об обстановке и ходе движений.
Именно приспособительная (предупреждающая отклонения) и коррекционная (исправляющая отклонения) изменчивость делают успешной борьбу с помехами, предупреждают и устраняют случайные существенные отклонения.
При обучении новым упражнениям используются соответствующие, ранее сформированные подсистемы движений; затормаживаются наличные подсистемы, непригодные для решения данной задачи; формируются новые подсистемы, необходимые для решения новой двигательной задачи и на этой основе происходит формирование структур вновь создаваемой системы движений.
Двигательная деятельность человека отличается чрезвычайной способностью к функциональной перестройке и накоплению форм поведения. С возрастным развитием организма и накоплением двигательного опыта создаются все большие возможности для использования ранее освоенных движений.
При овладении физическими упражнениями всегда в большей или меньшей степени используются ранее созданные подсистемы движений. Нередко они несколько приспосабливаются к требованиям новых упражнений.
Поскольку возникает новая двигательная задача, для ее решения необходима выработка новых подсистем движений и вместе с тем подавление тех подсистем, которые не могут быть использованы, но могут помешать решению новой задачи.
Структуры подсистем объединяются, соединяются, согласовываются. Трудностей при этом возникает немало, хотя бы из-за различий характера подсистем, их временных характеристик (в частности, ритмов), степени их совместимости, устойчивости к помехам, осознаваемости и др.
Процесс построения системы движений при первоначальном овладении физическим упражнением опирается на постановку ряда задач. Прежде всего необходимо ознакомление с новым упражнением (рассказ, показ), создание модели упражнения, установление требований к его выполнению. Ознакомление включает в себя теоретическое понимание внешней картины (описание) и механизма (объяснение) движений; создание зрительного образа при наблюдении за показом; получение двигательных ощущений при первых попытках выполнения упражнения в целом или подводящих к нему упражнений. В результате ознакомления создается двигательное представление. Это происходит не сразу, а нередко после многократного повторения с уточнением на последующих ступенях обучения. В основе ознакомления лежат методы рассказа, показа и пробы.
Построение системы возможно аналитическим путем: с помощью подводящих упражнений формируются элементы будущей системы, а потом из них складывается целое упражнение. Для ряда упражнений более пригоден синтетический путь: сначала в общем виде создается целое, а потом происходит совершенствование его деталей. Оба пути тесно связаны, применяются в зависимости от особенностей разучиваемого упражнения, могут чередоваться по ходу обучения.
Решение третьей группы задач, связанных с применением упражнения для получения требуемого результата, должно обеспечить повышение эффективности упражнения (более высокий результат) и надежности его выполнения (при заданном результате).
Совершенствование техники начинается после завершения (в основном) формирования системы движений при начальном обучении и продолжается в течение всего времени, пока еще спортсмен тренируется. В основе совершенствования техники физического упражнения лежит перестройка системы движений. Взаимодействия между ее элементами приобретают все более упорядоченный характер; отклонения в исполнении движений, связанные с невысоким совершенством, недостаточной точностью движений, уменьшаются; приспособительные изменения,
наоборот, расширяют границы допустимых отклонений, приспосабливаются к все большему кругу переменных условий; увеличивается помехоустойчивость и надежность исполнения; исчезают случайные существенные отклонения.
Таким образом, перестройка систем движений обусловлена всеми видами двигательной деятельности, в особенности целенаправленным физическим воспитанием, а также возрастным физическим развитием; с изменениями в двигательном и управляющем аппаратах перестраиваются и системы движений.
1. Что такое система движений, ее состав и структура?
2. Как выделяют элементы движений в пространстве и во времени; как они объединены в подсистемы и целостную систему?
4. Что такое информационная структура двигательного действия?
5. Какова схема управления в двигательном действии человека?
6. Что такое прямая и обратная связи?
7. Что такое информация и каково ее значение в программировании движений?
8. Каково содержание двигательной задачи, программы и действия; как они формируются?
9. Каковы основные особенности управления движениями в переменных условиях?
10. Как изменяется система движений при становлении и совершенствовании спортивной техники?
Научная электронная библиотека
Фирилёва Ж. Е., Загрядская О. В.,
8.2.1. Биомеханика ходьбы
Ходьба по ровной поверхности требует относительно малой работы всех групп мышц у здорового человека и происходит практически автоматически, без особого участия сознания. Группы мышц, выполняющие основную работу, включают:
1) подошвенные сгибатели стопы в момент отталкивания,
2) сгибатели бедра в момент отрыва от поверхности,
3) разгибатели бедра в ранней фазе опоры, когда бедро разгибается, чтобы переместить массу тела над опорной стопой, функционируя по принципу маятника (Olney, 2005).
К биомеханическим критериям ходьбы можно отнести:
– поддержание вертикального положения и равновесия в момент перемещения тела вперёд над ступнями;
– контроль за постановкой стоп с пятки;
– отработка ритма движений во взаимосвязи всех звеньев тела;
– координационная взаимосвязь звеньев тела при передвижении;
– гибкость формирования двигательного навыка ходьбы при применении в различных условиях и соответствие поставленным задачам (условия местности, характер грунта, препятствия и др.).
Анализ шагательных движений характеризуется попеременной активностью ног, чередованием отталкивания и переноса каждой ноги. Эти движения отличаются строгой слаженностью и соответствием строению тела. Как указывает Д.Д. Донской (1975), в шагательных движениях каждая нога поочерёдно бывает опорной и переносной. В опорном периоде имеются фазы амортизации и отталкивания, в переносной – период подъёма и торможения ноги.
Основа шагательных движений – фаза отталкивания – неразрывно связана с подготовкой к ней – с фазой амортизации. Вместе они составляют период опоры, когда нога имеет контакт с опорой и находится под действием веса и силы инерции тела (рис. 11).
Рис. 11. Биомеханика ходьбы
Фаза амортизации начинается с постановки ноги с пятки на опору. Амортизация заключается в торможении движения тела по направлению к опоре. Происходит уступающее движение, мышцы растягиваются, совершая отрицательную работу и уменьшая скорость движения тела. К концу амортизации вертикальная составляющая скорости тела падает до нуля, опускание вниз прекращается. Горизонтальная же составляющая скорости за это время уменьшается, но не до нуля, тело не останавливается, а продолжает движение вперёд. Фаза амортизации заканчивается в момент прекращения движения тела вниз.
Окончанием фазы амортизации условно считают наибольшее сгибание опорной ноги в коленном суставе. Амортизация выполняется не только движением в коленном суставе, но и имеет место растягивание мышц в голеностопном суставе (перекат с пятки на носок), оно заканчивается несколько позже амортизации в коленном суставе.
Фаза отталкивания начинается с разгибания опорной ноги в коленном суставе. К этому движению отталкивания несколько позже присоединяется подошвенное сгибание стопы в голеностопном суставе. Условность начала фазы отталкивания определяется движением разгибания бедра опорной ноги в тазобедренном суставе, которое может начинаться в момент опоры. Окончанием фазы отталкивания считают момент отрыва стопы от опоры.
После опорного периода ноги наступает период её переноса. Фаза подъёма ноги начинается с момента отрыва от опоры и заканчивается началом её движения вперёд (относительно таза). В это время происходит опора тела только на одной опорной ноге и длится она до опускания ноги на опору.
Фаза опускания ноги на опору начинается с момента крайнего положения бедра вперёд и кверху и заканчивается в момент постановки стопы на опору. В циклических перемещениях движениям ног соответствуют маховые движения рук, согласованные перекрёстной координацией движений всех четырёх конечностей. Так, соответственно выносу левой ноги вперёд определяется движение правой руки вперёд-книзу. Руки двигаются свободно и ритмично, создавая определённое балансирование и хорошие условия для сердечно-сосудистой и дыхательной систем.
В зависимости от способа шагательного перемещения и темпа шагов, осуществляются движения туловища и таза относительно всех трёх осей: наклоны вперёд и назад, в боковых направлениях, поворот вокруг вертикальной оси. Всё это происходит в большей или меньшей степени, в связи с движениями туловища и таза, которые динамически связаны с движением ног и рук.
Для увеличения скорости шагательных движений нужно увеличить их длину и частоту. Изменяя величину и длительность усилий, перестраивают ритм шагательных движений: изменяется длина, частота шагов и скорость передвижения. Изменение двигательной задачи и условий её выполнения требует качественной перестройки всей системы движений (Д.Д. Донской, 1975).
Указанные особенности биодинамической структуры движений необходимо учитывать в методике обучения шаговым движениям лиц, перенёсших инсульт и имеющих отклонения в опорно-двигательном аппарате и осваивающих ходьбу.