что такое uniform инициализация в с
C++/Список инициализации
Список инициализации — концепция суть которой состоит в том, что структура/класс или массив могут быть созданы передачей списка аргументов в порядке, соответствующем порядку определения членов структуры.
Списки инициализации рекурсивны, что позволяет их использовать для массивов структур и структур, содержащих вложенные структуры. Концепция списков инициализации пришла в C++ из C.
Содержание
Виды списков инициализации
Список инициализации это общее название концепции, которая включает в себя несколько видов и практик списков инициализации.
Инициализаторы агрегатов или списки инициализации
Это инициализация объекта посредством присвоения или передачи его конструктору по-умолчанию массива данных, то есть данных в фигурных скобках.
При таком синтаксисе данные передаются конструктору по-умолчанию, который поймёт синтаксис списка инициализации и инициализирует данные, то есть для этого не надо писать свой конструктор.
Только агрегирующие типы и POD (Plain Old Data) типы могут быть инициализированы с помощью инициализаторов агрегатов (вида SomeType var = <1,2,3>;).
Инициализация не агрегированных данных с помощью списка инициализации не допускается (error C2552). Если есть перегруженный конструктор, то это уже не агрегированные данные.
Cписок инициализации и шаблонный класс std::initializer_list
Данное описание позволяет создать SequenceClass из последовательности целых чисел следующим образом:
Здесь демонстрируется работа особого вида конструктора для списка инициализации. Классы, содержащие подобные конструкторы, обрабатываются особым образом во время инициализации.
Класс std::initializer_list<> определён в стандартной библиотеке C++11. Однако, объекты данного класса могут быть созданы компилятором C++11 только статически с использованием синтаксиса со скобками <>. Список может быть скопирован после создания, однако, это будет копированием по ссылке. Список инициализации является константным: ни его члены, ни их данные не могут быть изменены после создания, поэтому наиболее правильно будет выглядеть так:
Так как std::initializer_list<> является полноценным типом, он может быть использован не только в конструкторах. Обычные функции могут получать типизированные списки инициализации в качестве аргумента, например:
Стандартные контейнеры могут быть инициализированы следующим образом:
Универсальная инициализация или расширение синтаксиса списков инициализации
Такой подход это изменённый синтаксис конструктора. Требует создания вручную конструктора со специфическим синтаксисом.
Такой синтаксис «: x_(x), y_(y)» это универсальная инициализация или расширение синтаксиса списков инициализации. Такой подход является безотказным, универсальным (подходит и работает везде), практичным (экономит память при инициализации сложных типов) и рекомендуемым.
В таком списке инициализации переменная сразу создаётся и инициализируется. Это позволяет инициализировать константы и сложные типы без вызова их конструкторов, что невозможно при инициализации внутри тела конструктора, когда переменные уже созданы и происходит только их настройка.
В случае классов/структур такой вид списка инициализации применим только к конструкторам.
Универсальная инициализация не заменяет полностью синтаксиса инициализации с помощью конструктора. Если в классе есть конструктор, принимающий в качестве аргумента список инициализации (ИмяТипа(initializer_list );), он будет иметь более высокий приоритет по сравнению с другими возможностями создания объектов. Например, в C++11 std::vector содержит конструктор, принимающий в качестве аргумента список инициализации:
Данный код приведёт к вызову конструктора, принимающего в качестве аргумента список инициализации, а не конструктор с одним параметром, создающий контейнер заданного размера. Для вызова этого конструктора пользователь должен будет использовать стандартный синтаксис вызова конструктора.
Основные отличия списка инициализации от тела
Суть в том, что задать значения свойств/полей можно как при помощи списка инициализации, так и в теле самого конструктора. Вся разница в том, что в списке инициализации переменные декларируются и сразу же инициализируются в то время как в теле конструктора созданные переменные лишь задаются значениями/инициализируются. Разницу можно почувствовать, например, при работе с константами классов. Переменную нужно задавать значением сразу при декларации, поэтому определить переменную класса можно лишь в списке инициализации так как в это время она и создаётся. Уже в теле конструктора константу класса задать нельзя так как на этот момент она уже создана и переопределять константы нельзя.
Возвращение списка инициализации
Суть возвращения списков инициализации в том, что бы представлять объект в виде JSON, то есть объект записывается в фигурных скобках. Таким образом можно как инициализировать объект, так и возвращать объект в виде списка инициализации.
Предоставлена возможность писать подобный код:
Последовательность инициализаторов
Инициализаторы полей должны следовать в списке инициализации после двоеточия в том же порядке, в котором сами поля описаны в классе. Иное не явл. ошибкой, но хороший компилятор обязательно выдаст предупреждение.
Единая инициализация в C ++
Равномерная инициализация — это функция в C ++ 11, которая позволяет использовать согласованный синтаксис для инициализации переменных и объектов, начиная от примитивного типа до агрегатов. Другими словами, он вводит фигурную инициализацию, которая использует фигурные скобки (<>) для включения значений инициализатора. Синтаксис выглядит следующим образом:
Ниже приведены некоторые примеры различных способов инициализации различных типов:
Если инициализируется с помощью инициализации скобки, приведенный выше код может быть переписан как:
Приложения равномерной инициализации
// C ++ программа для демонстрации инициализации
// динамического массива в C ++ с использованием равномерной инициализации
#include
using namespace std;
// объявляем динамический массив
// и инициализация с использованием фигурных скобок
int * pi = new int [5]< 1, 2, 3, 4, 5 >;
// печать содержимого массива
// C ++ программа для инициализации
// массив данных члена класса
// с равномерной инициализацией
#include
using namespace std;
// инициализация массива с использованием равномерной инициализации
A( int x, int y, int z)
// печать содержимого массива
// Новый объект создан и номера
// для инициализации массива передаем
// в это как аргументы
// C ++ программа для неявного
// инициализируем объект для возврата
#include
Урок №141. Конструктор копирования
Обновл. 13 Сен 2021 |
Вспомним все типы инициализации, которые поддерживает язык C++: прямая инициализация, uniform-инициализация и копирующая инициализация.
Конструктор копирования
Рассмотрим примеры всех вышеприведенных инициализаций на практике, используя следующий класс Drob:
Мы можем выполнить прямую инициализацию:
В C++11 мы можем выполнить uniform-инициализацию:
И, наконец, мы можем выполнить копирующую инициализацию:
С прямой инициализацией и uniform-инициализацией создаваемый объект непосредственно инициализируется. Однако с копирующей инициализацией дела обстоят несколько сложнее. Мы рассмотрим это детально на следующем уроке. Но перед этим нам еще нужно кое в чём разобраться.
Рассмотрим следующую программу:
Результат выполнения программы:
Рассмотрим детально, как работает эта программа.
Конструктор копирования — это особый тип конструктора, который используется для создания нового объекта через копирование существующего объекта. И, как в случае с конструктором по умолчанию, если вы не предоставите конструктор копирования для своих классов самостоятельно, то язык C++ создаст public-конструктор копирования автоматически. Поскольку компилятор мало знает о вашем классе, то по умолчанию созданный конструктор копирования будет использовать почленную инициализацию. Почленная инициализация означает, что каждый член объекта-копии инициализируется непосредственно из члена объекта-оригинала. Т.е. в примере, приведенном выше, dCopy.m_numerator будет иметь значение sixSeven.m_numerator ( 6 ), а dCopy.m_denominator будет равен sixSeven.m_ denominator ( 7 ).
Так же, как мы можем явно определить конструктор по умолчанию, так же мы можем явно определить и конструктор копирования. Конструктор копирования выглядит следующим образом:
Инициализация в современном C++
Общеизвестно, что семантика инициализации — одна из наиболее сложных частей C++. Существует множество видов инициализации, описываемых разным синтаксисом, и все они взаимодействуют сложным и вызывающим вопросы способом. C++11 принес концепцию «универсальной инициализации». К сожалению, она привнесла еще более сложные правила, и в свою очередь, их перекрыли в C++14, C++17 и снова поменяют в C++20.
Под катом — видео и перевод доклада Тимура Домлера (Timur Doumler) с конференции C++ Russia. Тимур вначале подводит исторические итоги эволюции инициализации в С++, дает системный обзор текущего варианта правила инициализации, типичных проблем и сюрпризов, объясняет, как использовать все эти правила эффективно, и, наконец, рассказывает о свежих предложениях в стандарт, которые могут сделать семантику инициализации C++20 немного более удобной. Далее повествование — от его лица.
Table of Contents
Гифка, которую вы сейчас видите, отлично доносит основную мысль доклада. Я нашёл её на просторах интернета где-то полгода тому назад, и выложил у себя в твиттере. В комментариях к ней кто-то сказал, что не хватает ещё трёх типов инициализации. Началось обсуждение, в ходе которого мне предложили сделать об этом доклад. Так всё и началось.
Про инициализацию уже рассказывал Николай Йоссутис. В его докладе был слайд, на котором перечислялись 19 различных способов инициализировать int:
Мне кажется, это уникальная ситуация для языка программирования. Инициализация переменной — одно из простейших действий, но в С++ сделать это совсем не просто. Вряд ли в этом языке есть какая-либо другая область, в которой за последние годы было бы столько же отчётов об отклонениях от стандарта, исправлений и изменений. Правила инициализации меняются от стандарта к стандарту, и в интернете есть бесчисленное количество постов о том, как запутана инициализация в C++. Поэтому сделать её систематический обзор — задача нетривиальная.
Я буду излагать материал в хронологическом порядке: вначале мы поговорим о том, что было унаследовано от С, потом о С++98, затем о С++03, С++11, С++14 и С++17. Мы обсудим распространённые ошибки, и я дам свои рекомендации относительно правильной инициализации. Также я расскажу о нововведениях в С++20. В самом конце доклада будет представлена обзорная таблица.
Инициализация по умолчанию (С)
В С++ очень многое унаследовано от С, поэтому с него мы и начнём. В С есть несколько способов инициализации переменных. Их можно вообще не инициализировать, и это называется инициализация по умолчанию. На мой взгляд, это неудачное название. Дело в том, что никакого значения по умолчанию переменной не присваивается, она просто не инициализируется. Если обратиться к неинициализированной переменной в C++ и в С, возникает неопределённое поведение:
То же касается пользовательских типов: если в некотором struct есть неинициализированные поля, то при обращении к ним также возникает неопределённое поведение:
В С++ было добавлено множество новых конструкций: классы, конструкторы, public, private, методы, но ничто из этого не влияет на только что описанное поведение. Если в классе некоторый элемент не инициализирован, то при обращении к нему возникает неопределённое поведение:
Никакого волшебного способа инициализировать по умолчанию элемент класса в С++ нет. Это интересный момент, и в течение первых нескольких лет моей карьеры с С++ я этого не знал. Ни компилятор, ни IDE, которой я тогда пользовался, об этом никак не напоминали. Мои коллеги не обращали внимания на эту особенность при проверке кода. Я почти уверен, что из-за неё в моём коде, написанном в эти годы, есть довольно странные баги. Мне казалось очевидным, что классы должны инициализировать свои переменные.
В C++98 можно инициализировать переменные при помощи member initializer list. Но такое решение проблемы не оптимальное, поскольку это необходимо делать в каждом конструкторе, и об этом легко забыть. Кроме того, инициализация идёт в порядке, в котором переменные объявлены, а не в порядке member initializer list:
В C++11 были добавлены инициализаторы элементов по умолчанию (direct member initializers), которыми пользоваться значительно удобнее. Они позволяют инициализировать все переменные одновременно, и это даёт уверенность, что все элементы инициализированы:
Моя первая рекомендация: когда можете, всегда используйте DMI (direct member initializers). Их можно использовать как со встроенными типами ( float и int ), так и с объектами. Привычка инициализировать элементы заставляет подходить к этому вопросу более осознанно.
Копирующая инициализация (С)
Итак, первый унаследованный от С способ инициализации — инициализация по умолчанию, и ей пользоваться не следует. Второй способ — копирующая инициализация. В этом случае мы указываем переменную и через знак равенства — её значение:
Копирующая инициализация также используется, когда аргумент передаётся в функцию по значению, или когда происходит возврат объекта из функции по значению:
Знак равенства может создать впечатление, что происходит присвоение значения, но это не так. Копирующая инициализация — это не присвоение значения. В этом докладе вообще ничего не будет про присвоение.
Другое важное свойство копирующей инициализации: если типы значений не совпадают, то выполняется последовательность преобразования (conversion sequence). У последовательности преобразования есть определенные правила, например, она не вызывает explicit конструкторов, поскольку они не являются преобразующими конструкторами. Поэтому, если выполнить копирующую инициализацию для объекта, конструктор которого отмечен как explicit, происходит ошибка компиляции:
Более того, если есть другой конструктор, который не является explicit, но при этом хуже подходит по типу, то копирующая инициализация вызовет его, проигнорировав explicit конструктор:
Агрегатная инициализация (С)
Третий тип инициализации, о котором я хотел бы рассказать — агрегатная инициализация. Она выполняется, когда массив инициализируется рядом значений в фигурных скобках:
Если при этом не указать размер массива, то он выводится из количества значений, заключённых в скобки:
Эта же инициализация используется для агрегатных (aggregate) классов, то есть таких классов, которые являются просто набором публичных элементов (в определении агрегатных классов есть ещё несколько правил, но сейчас мы не будем на них останавливаться):
Этот синтаксис работал ещё в С и С++98, причём, начиная с С++11, в нём можно пропускать знак равенства:
Агрегатная инициализация на самом деле использует копирующую инициализацию для каждого элемента. Поэтому, если попытаться использовать агрегатную инициализацию (как со знаком равенства, так и без него) для нескольких объектов с explicit конструкторами, то для каждого объекта выполняется копирующая инициализация и происходит ошибка компиляции:
А если для этих объектов есть другой конструктор, не-explicit, то вызывается он, даже если он хуже подходит по типу:
Рассмотрим ещё одно свойство агрегатной инициализации. Вопрос: какое значение возвращает эта программа?
Совершенно верно, нуль. Если при агрегатной инициализации пропустить некоторые элементы в массиве значений, то соответствующим переменным присваивается значение нуль. Это очень полезное свойство, потому что благодаря нему никогда не может быть неинициализированных элементов. Оно работает с агрегатными классами и с массивами:
Статическая инициализация (С)
Наконец, от С также унаследована статическая инициализация: статические переменные всегда инициализируются. Это может быть сделано несколькими способами. Статическую переменную можно инициализировать выражением-константой. В этом случае инициализация происходит во время компиляции. Если же переменной не присвоить никакого значения, то она инициализируется значением нуль:
Эта программа возвращает 3, несмотря на то, что j не инициализировано. Если же переменная инициализируется не константой, а объектом, могут возникнуть проблемы.
Вот пример из реальной библиотеки, над которой я работал:
Итак, от языка C унаследованы четыре типа инициализации: инициализация по умолчанию, копирующая, агрегатная и статическая инициализации.
Прямая инициализация (С++98)
Перейдём теперь к С++98. Пожалуй, наиболее важная возможность, отличающая С++ от С — это конструкторы. Вот пример вызова конструктора:
Кроме того, при прямой инициализации не выполняется последовательность преобразования. Вместо этого происходит вызов конструктора при помощи разрешения перегрузки (overload resolution). У прямой инициализации тот же синтаксис, что и у вызова функции, и используется та же логика, что и в других функциях С++.
Поэтому в ситуации с explicit конструктором прямая инициализация работает нормально, хотя копирующая инициализация выдаёт ошибку:
В ситуации же с двумя конструкторами, один из которых explicit, а второй хуже подходит по типу, при прямой инициализации вызывается первый, а при копирующей — второй. В такой ситуации изменение синтаксиса приведёт к вызову другого конструктора — об этом часто забывают:
Прямая инициализация применяется всегда, когда используются круглые скобки, в том числе когда используется нотация вызова конструктора для инициализации временного объекта, а также в выражениях new с инициализатором в скобках и в выражениях cast :
Этот синтаксис существует столько, сколько существует сам С++, и у него есть важный недостаток, который упомянул Николай в программном докладе: the most vexing parse. Это значит, что всё, что компилятор может прочитать как объявление (declaration), он читает именно как объявление.
Инициализация значением (C++03)
Перейдём к следующей версии — С++03. Принято считать, что существенных изменений в этой версии не произошло, но это не так. В С++03 появилась инициализация значением (value initialization), при которой пишутся пустые круглые скобки:
В С++98 здесь возникает неопределенное поведение, потому что происходит инициализация по умолчанию, а начиная с С++03 эта программа возвращает нуль.
Правило такое: если существует определённый пользователем конструктор по умолчанию, инициализация значением вызывает этот конструктор, в противном случае возвращается нуль.
Рассмотрим подробнее ситуацию с пользовательским конструктором:
Стоит заметить, что «пользовательский» не значит «определённый пользователем». Это значит, что пользователь должен предоставить тело конструктора, т. е. фигурные скобки. Если же в примере выше заменить тело конструктора на = default (эта возможность была добавлена в С++11), смысл программы изменяется. Теперь мы имеем конструктор, определённый пользователем (user-defined), но не предоставленный пользователем (user-provided), поэтому программа возвращает нуль:
Теперь попробуем вынести Widget() = default за рамки класса. Смысл программы снова изменился: Widget() = default считается предоставленным пользователем конструктором, если он находится вне класса. Программа снова возвращает неопределённое поведение.
Универсальная инициализация (C++11)
В версии С++11 было много очень важных изменений. В частности, была введена универсальная (uniform) инициализация, которую я предпочитаю называть «unicorn initialization» («инициализация-единорог»), потому что она просто волшебная. Давайте разберёмся, зачем она появилась.
Все эти проблемы создатели языка попытались решить, введя синтаксис с фигурными скобками но без знака равенства. Предполагалось, что это будет единый синтаксис для всех типов, в котором используются фигурные скобки и не возникает проблемы vexing parse. В большинстве случаев этот синтаксис выполняет свою задачу.
Эта новая инициализация называется инициализация списком, и она бывает двух типов: прямая и копирования. В первом случае используются просто фигурные скобки, во втором — фигурные скобки со знаком равенства:
Мне кажется, что со стороны комитета С++ std::initializer_list был не самым удачным решением. От него больше вреда, чем пользы.
Далее, std::initializer_list является объектом. Используя его, мы, фактически, создаём и передаём объекты. Как правило, компилятор может это оптимизировать, но с точки зрения семантики мы всё равно имеем дело с лишними объектами.
Если вызвать vector с двумя аргументами int и использовать прямую инициализацию, то выполняется вызов конструктора, который первым аргументом принимает размер вектора, а вторым — значение элемента. На выходе получается вектор из трёх нулей. Если же вместо круглых скобок написать фигурные, то используется initializer_list и на выходе получается вектор из двух элементов, 3 и 0.
Есть примеры ещё более странного поведения этого синтаксиса:
Ещё больше трудностей возникает при использовании шаблонов. Как вы думаете, что возвращает эта программа? Какой здесь размер вектора?
Теперь давайте разберёмся, что именно делает инициализация списком.
Для агрегатных типов при такой инициализации выполняется агрегатная
инициализация.
Для встроенных типов — прямая инициализация ( ) или
копирующая инициализация ( = );
А для классов выполняется такая последовательность:
Для второго шага есть пара исключений.
Но бывают случаи, когда от этой конструкции только вред. Давайте рассмотрим такой случай:
Идём дальше. Передача и возврат braced-init-list также является инициализацией копированием списка. Это очень полезное свойство:
Если происходит возврат по значению, то используется инициализация копированием, поэтому при возврате braced-init-list используется инициализация копированием списка. А если передать braced-init-list функции, это также приведёт к инициализации копированием списка.
Конечно, это приводит к некоторым затруднениям в случае со вложенными скобками. На StackOverflow недавно был замечательный пост, в котором рассматривался один и тот же вызов функции с разными уровнями вложенности. Выяснилось, что результаты на всех уровнях разные. Я не буду вдаваться в подробности, потому что там всё очень сложно, но сам этот факт показателен:
Улучшения в С++14
Итак, мы прошли все версии до C++11 включительно. Мы обсудили все инициализации прошлых версий, плюс инициализацию списком, которая часто работает по совсем не очевидным правилам. Поговорим теперь о C++14. В нём были исправлены некоторые проблемы, доставшиеся от прошлых версий.
Например, в С++11 у агрегатных классов не могло быть direct member initializers, что вызывало совершенно ненужные затруднения. Выше я уже говорил о том, что direct member initializers очень полезны. Начиная с С++14, у агрегатных классов могут быть direct member initializers:
Наконец, в C++14 была решена проблема со статической инициализацией, но она была значительно менее важной, чем те, о которых я сейчас рассказал, и останавливаться на ней мы не будем. Если есть желание, об этом можно почитать самостоятельно.
Несмотря на все эти фиксы, в С++14 осталось много проблем с инициализацией списком:
Сам std::initializer_list не работает с move-only типами.
Синтаксис практичеcки бесполезен для шаблонов, поэтому emplace или make_unique нельзя использовать для агрегатных типов.
Есть некоторые неочевидные правила, о которых мы уже говорили:
Наконец, я еще не рассказал, что инициализация списка совсем не работает с макросами.
Пример про макросы: assert(Widget(2,3)) выполняется, а assert(Widget<2,3>) ломает препроцессор. Дело в том, что у макросов есть специальное правило, которое правильно читает запятую внутри круглых скобок, но оно не было обновлено для фигурных скобок. Поэтому запятая в этом примере рассматривается как конец первого аргумента макроса, хотя скобки ещё не закрыты. Это приводит к сбою.
Как правильно инициализировать в C++
Я могу предложить несколько советов относительно того, как правильно инициализировать значения в С++.
Для простых типов вроде int используйте инициализацию копированием, т. е. знак равенства и значение — так делается в большинстве языков программирования, к этому все давно привыкли и это наиболее простой вариант.
Кроме того, фигурными скобками удобно пользоваться для передачи и возвращения врéменных объектов. При помощи двух пустых фигурных скобок можно быстро сделать инициализацию значения временного объекта.
Можно даже пропустить имя типа и использовать braced-init-list — это работает только с фигурными скобками.
= value для простых типов
(args) для вызова конструкторов
Смысл тот же, но так вы никогда не забудете инициализировать переменную. Больше того, если следовать этой рекомендации и писать тип в правой части выражения, то не возникает проблемы vexing parse:
Изначально это правило формулировалось как «почти всегда auto» («almost always auto», AAA), поскольку в С++11 и С++14 при таком написании код не всегда компилировался, как, например, в случае с таким std::atomic :
Дело в том, что atomic нельзя перемещать и копировать. Несмотря на то, что в нашем синтаксисе никакого копирования и перемещения не происходит, всё равно было требование, чтобы использовался соответствующий конструктор, хоть вызова к нему и не происходило. В С++17 эта проблема была решена, было добавлено новое свойство, которое называется гарантированный пропуск копирования (guaranteed copy elision):
В С++17 также была добавлена CTAD (class template argument deduction). Оказалось, что у этого свойства есть довольно странные и не всегда очевидные следствия для инициализации. Эту тему уже затрагивал Николай в программном докладе. Кроме того, в прошлом году я выступал с докладом на CppCon, целиком посвящённым CTAD, там обо всём этом рассказано значительно подробнее. По большому счёту, в С++17 ситуация та же, что и в С++11 и С++14, за исключением того, что были исправлены некоторые самые неудобные неисправности. Инициализация списком сейчас работает лучше, чем в прошлых версиях, но, на мой взгляд, в ней ещё многое можно улучшить.
Назначенная инициализация (С++20)
Теперь давайте поговорим о С++20, то есть о грядущих изменениях. И да, вы угадали, в этом новом стандарте появится ещё один способ инициализации объектов: назначенная инициализация (designated initialization):
Важное преимущество такого подхода в том, что здесь, как и при агрегатной инициализации, не может быть неинициализированных переменных. Работает такая инициализация только с агрегатными типами, то есть фактически это другой синтаксис для агрегатной инициализации.
Сделано это было для совместимости с С, и работает так же, как в С99, с некоторыми исключениями:
в С не нужно соблюдать порядок элементов, то есть в нашем примере можно сначала инициализировать с, а потом а. В С++ так делать нельзя, поскольку вещи конструируются в порядке, в котором они объявлены. :
К сожалению, это ограничивает применимость этой конструкции.
в С++ нельзя одновременно использовать назначенную и обычную инициализацию, но лично мне сложно придумать ситуацию, в которой это следовало бы делать:
в С++ этот вид инициализации нельзя использовать с массивами. Но, опять-таки, я не думаю, что это вообще следует делать.
Исправления в C++20
Помимо нового вида инициализации в С++20 будут исправлены некоторые вещи из предыдущих версий, и некоторые из этих изменений были предложены мной. Обсудим одно из них (wg21.link/p1008).
Когда в С++17 удаляется конструктор по умолчанию, это скорее всего значит, что автор кода хочет запретить создание экземпляров объекта. В агрегатных типах с удалённым конструктором по умолчанию инициализация по умолчанию выдаёт ошибку, но агрегатная инициализация работает, и это позволяет обойти удаление конструктора, сделанное автором класса:
Это очень странное поведение, чаще всего люди о нём не знают, и это приводит к непредсказуемым последствиям. В С++20 правила будут изменены. При объявлении конструктора тип больше не является агрегатным, так что конструкторы и агрегатная инициализация больше не входят в конфликт друг с другом. Мне кажется, это правильное решение. Если в классе нет объявленного пользователем конструктора, то это агрегатный тип, а если такой конструктор есть, то не агрегатный.
Об этом просто забыли, когда в С++11 создавали braced-init-list. В С++ это будет исправлено. Вряд ли много людей сталкивалось с этой проблемой, но исправить её полезно для согласованности языка.
Прямая инициализация агрегатных типов (C++20)
Наконец, в С++20 будет добавлен ещё один способ инициализации. Я уже говорил о неудобствах инициализации списком, из них в особенности неприятна невозможность использовать её с шаблонами и с макросами. В С++20 это исправят: можно будет использовать прямую инициализацию для агрегатных типов (wg21.link/p0960).
Кроме того, эта новая возможность будет работать с массивами:
На мой взгляд, это очень важно: назовём это uniform инициализацией 2.0. Вновь будет достигнута некоторая однородность. Если агрегатную инициализацию можно будет выполнять и с фигурными, и с круглыми скобками, то, в сущности, круглые и фигурные скобки будут делать почти одно и то же. Исключение — конструктор initializer_list : если необходимо его вызвать, надо использовать фигурные скобки, если нет — круглые. Это позволяет однозначно указать, что именно нам необходимо. Кроме того, фигурные скобки по-прежнему не будут выполнять сужающие преобразования, а круглые — будут. Это делается для однородности с вызовами конструктора.
Я подвёл итог всему, что мы сегодня обсуждали, в таблице. Строки в этой таблице — различные типы, а столбцы — синтаксисы инициализации. На этом у меня всё, спасибо большое за внимание.
Уже совсем скоро, в конце октября, Тимур приедет на C++ Russia 2019 Piter и выступит с докладом «Type punning in modern C++». Тимур расскажет про новые техники, представленные в С++20, и покажет, как их безопасно использовать, а также разберёт «дыры» в С++ и объяснит, как их можно пофиксить.