В предыдущем параграфе мы рассмотрели структурные формулы некоторых алканов. Структурные формулы отражают не только состав, но и последовательность соединения атомов в молекуле. В то же время структурные формулы могут не показывать пространственного строения молекулы.
Например, структурную формулу метана часто изображают следующим образом:
Экспериментально установлено, что молекула метана не является плоской, а имеет форму правильного тетраэдра, в центре которого находится атом углерода, а в вершинах — атомы водорода:
Угол между связями (валентный угол) в молекуле метана равен 109°28′. В структурной формуле метана связи часто изображают под углом 90°.
Возможны и другие варианты, например:
Все эти варианты структурных формул являются правильными, так как верно отображают последовательность соединения атомов в молекуле.
Рассмотрим строение молекулы метана более подробно. Образование связей в молекулах происходит в результате перекрывания атомных орбиталей. Строение электронной оболочки атома углерода в возбуждённом состоянии показывает электронно-графическая схема:
В возбуждённом состоянии у атома углерода имеется один электрон на s-орбитали и три электрона на р-орбиталях. При образовании ковалентных связей с атомами водорода возможны два способа перекрывания электронных облаков (рис. 7.2 и 7.3).
Связь, образованная в результате перекрывания 2s-орбитали атома углерода и 1s-орбитали атома водорода (рис. 7.2), должна отличаться от трёх других связей, которые образуются в результате перекрывания 2p-орбиталей атома углерода и 1s-орбитали атома водорода (рис. 7.3). В действительности все четыре связи в молекуле метана совершенно одинаковы. Для объяснения этого факта используются представления о гибридизации атомных орбиталей.
При образовании ковалентных связей в молекуле метана четыре валентные орбитали атома углерода смешиваются и образуют четыре орбитали одинаковой формы (гибридные орбитали):
Рассмотрим, как располагаются четыре гибридные орбитали атома углерода в пространстве. Электронные облака имеют отрицательный заряд, следовательно, гибридные орбитали должны располагаться таким образом, чтобы электростатическое отталкивание одноименно заряженных электронов было наименьшим. Данному условию отвечает расположение гибридных орбиталей под углом 109°28′ (рис. 7.5):
Эти выводы подтверждаются результатами исследования с помощью физико-химических методов. Действительно, молекула метана имеет тераэдрическую форму, угол между связями составляет 109°28′ (рис. 7.6).
Из схемы перекрывания электронных облаков в молекуле метана видно, что гибридные электронные облака атома углерода вытянуты к атомам водорода. Такие облака могут сильнее перекрываться с электронными облаками атомов водорода и, следовательно, образовывать более прочные связи.
Пространственное строение молекул органических соединений можно наглядно отобразить с помощью шаростержневых моделей.
Моделями атомов углерода являются шарики серого цвета с четырьмя отверстиями; моделями атомов водорода — шарики белого цвета с одним отверстием. Модели ковалентных химических связей — пластмассовые стержни. На рисунке 7.8 показаны шаростержневые модели молекул метана, пропана и н-бутана.
Видно, что атомы углерода в молекулах пропана и н-бутана не лежат на одной прямой. Например, углеродная цепь молекулы н-бутана имеет форму ломаной линии. Это объясняется тем, что угол между связями в молекулах алканов приблизительно равен 109°.
Для изображения структуры алканов и других органических веществ часто используют формулы, в которых вообще не указываются химические символы углерода и водорода. Формулы алканов в этом случае представляют собой ломаные линии, отображающие углеродный скелет молекулы. Такие формулы называются скелетными формулами. Очевидно, что скелетные формулы можно записывать для алканов, начиная с этана, при этом формула этана имеет вид чёрточки, а формула пропана представляет собой ломаную линию, состоящую из двух прямых, и т. д.:
Скелетные формулы органических соединений широко используются, наряду с обычными структурными формулами. Преимущество данных формул — компактность и быстрота написания. Кроме этого, скелетные формулы, в отличие от структурных формул, дают представление о пространственном строении молекул органических соединений.
Молекулы алканов построены из sp 3 -гибридизованных атомов углерода.
Углеродная цепь молекул алканов имеет форму ломаной линии.
Термин гибрид вам известен из биологии и означает организм, полученный вследствие скрещивания. По аналогии с этим в теории химической связи вводят понятие гибридная орбиталь. Она рассматривается как результат своеобразного «скрещивания» разных по форме, но близких по энергии атомных орбиталей.
Теоретические представления о гибридизации атомных орбиталей построены на следующих положениях.
1. При образовании ковалентных σ-связей исходные валентные s— и p-орбитали приобретают одинаковую форму и энергию, превращаясь в гибридные орбитали.
Гибридизациейназывают перераспределение электронной плотности орбиталей свободного атома при образовании молекулы с формированием гибридных орбиталей.
2. Гибридные орбитали похожи друг на друга и отличаются от исходных s— и p-орбиталей своей энергией и формой электронного облака. В результате гибридизации энергия гибридных атомных орбиталей выравнивается. Гибридные орбитали более вытянуты в пространстве в сторону соседних атомов. Это обеспечивает их более полное перекрывание с атомными орбиталями соседних атомов и, соответственно, более прочные связи с ними.
4. Число образующихся гибридных орбиталей равно суммарному числу исходных орбиталей, принимающих участие в гибридизации.
6. π-Связи образуются за счёт бокового перекрывания негибридных орбиталей.
7. Гибридные орбитали располагаются в пространстве на максимальном удалении друг от друга.
Различают несколько типов гибридизации. Каждому из них соответствует определённая ориентация гибридных орбиталей в пространстве (табл. 12.1).
Характеристики различных типов гибридизации и примеры молекул и сложных ионов, пространственное строение которых отвечает этим типам гибридизации, приведены в таблице 12.1.
Исходные атомные орбитали
Число гибридных орбиталей
Тип гибридизации
Валентный угол*
Геометрическая фигура, отвечающая типу гибридизации центрального атома, и форма структурных единиц
Примеры
s + p
Две
sp
180°
* Указан идеальный валентный угол. В реальных структурах вследствие отталкивания неподелённых электронных пар валентный угол может отклоняться от идеального.
Рассмотрим, как можно использовать представление о гибридизации атомных орбиталей для предсказания и объяснения формы молекул неорганических веществ.
В молекуле аммиака азот является центральным атомом и образует три ковалентные связи с атомами водорода по обменному механизму. Если бы в образовании ковалентных связей участвовали исходные гантелеобразные р-орбитали азота, то угол между связями должен был составлять 90°. Объяснить действительный валентный угол в аммиаке можно, если использовать представление о гибридизации атомных орбиталей.
Однако, из-за того что на одной из гибридных орбиталей имеется неподелённая пара электронов, которая отталкивает орбитали со связывающими электронами, валентный угол уменьшается до 107.
В связи с тем что орбиталь с неподелённой парой электронов не входит в описание взаимного расположения атомов, принято говорить, что молекула аммиака имеет форму треугольной пирамиды с основанием в виде правильного треугольника из атомов Н—Н—Н и вершиной — атомом N.
При присоединении к молекуле аммиака катиона водорода искажение валентных углов устраняется.
Пример 2. В соответствии с экспериментальными данными валентный угол Н—O—Н в молекуле воды составляет 104,5°, то есть молекула воды имеет угловое строение. Используя представление о гибридных орбиталях, объясните пространственное строение молекулы воды.
Гомологи́ческийряд — ряд химических соединений одного структурного типа (например, алканы или алифатические спирты — спирты жирного ряда), отличающихся друг от друга по составу на определенное число повторяющихся структурных единиц — так называемую гомологическую разность. Гомо́логи — вещества, входящие в один и тот же гомологический ряд.
То есть каждый класс имеет гомологический ряд и все вещества в этом ряду будут является гомологами друг другу.
Гибридизация
Гибридизацияорбиталей — гипотетический процесс смешения разных (s, p, d, f) орбиталей центрального атома многоатомной молекулы с возникновением одинаковых орбиталей, эквивалентных по своим характеристикам.
sp3—Гибридизация — гибридизация, в которой участвуют атомные орбитали одного s— и трех p—электронов
Четыре sp 3 —гибридные орбитали симметрично ориентированны в пространстве под углом 109°28′ (рис. 2).
Пространственная конфигурация молекулы, центральный атом которой образован sp 3 —гибридными орбиталями —тетраэдр.
Тетраэдрическая пространственная конфигурация молекулы, центральный атом которой образован sp 3 —гибридными орбиталями
представлена модель молекулы метана (CH4), в которой атом углерода подвергается sp 3 —гибридизации.
sp2—Гибридизация — гибридизация, в которой участвуют атомные орбитали одного s— и двух p—электронов
В результате гибридизации образуются три гибридные sp 2 орбитали, расположенные в одной плоскости под углом 120° друг к другу
Пространственная конфигурация молекулы, центральный атом которой включает в себя sp 2 —гибридные орбитали, представлена на рисунке:
Этот тип гибридизации наблюдается, например в молекуле BCl3.
Модель этой молекулы изображена на рисунке:
Модель молекулы BCl3
sp— Гибридизация (линейная)
Одна s— и одна р—орбиталь смешиваются, образуя две равноценные sp—орбитали, расположенные под углом 180°, т.е. на одной оси.
Гибридные sp—орбитали участвуют в образовании двух s—связей. Две р—орбитали не гибридизованы и расположены во взаимно перпендикулярных плоскостях.
p—Орбитали образуют в соединениях две p—связи.
Для простоты изображения пространственного строения sp—атома обычно рисуют р—орбитали в форме электронных облаков, а гибридные орбитали изображают прямыми линиями.
Понятие и сущность sp3-гибридизации. Модель атома с sp3-гибридными орбиталями. Примеры соединений, для которых характерна sp3-гибридизация. Характеристика электронного строения атома углерода. Химические связи и гибридизация орбиталей атома углерода.
Рубрика
Химия
Вид
реферат
Язык
русский
Дата добавления
19.05.2016
Размер файла
399,1 K
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru
МИНОБРНАУКИ РОССИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ
ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ
«Санкт-Петербургский государственный технологический институт
Профиль Технология электрохимических производств
Факультет Химии веществ и материалов
Кафедра Технология электрохимических производств
Учебная дисциплина Физико-химические методы анализа
На тему: «sp3 гибридизация углерода»
Работу выполнил студент Бундюк В.С.
Работу принял Юдина Н.С.
гибридизация атом орбиталь углерод
Образовывать химическую связь, т.е. создавать общую электронную пару с «чужим» электроном от другого атома, могут только неспаренные электроны. Неспаренные электроны при записи электронных формул находятся по одному в клетке-орбитали.
На втором энергетическом уровне кроме 2s-орбитали имеются три 2р-орбитали. Эти 2р-орбитали имеют эллипсоидную форму, похожую на гантели, и ориентированы в пространстве под углом 90° друг к другу. 2р-Орбитали обозначают 2рх, 2рy и 2рz в соответствии с осями, вдоль которых эти орбитали расположены.
Форма и ориентация р-электронных орбиталей
Четыре sp3-гибридные орбитали атома углерода
Гибридные орбитали имеют асимметричную форму, вытянутую в сторону присоединяемого атома. Электронные облака взаимно отталкиваются и располагаются в пространстве максимально далеко друг от друга. При этом оси четырех sр3-гибридных орбиталей оказываются направленными к вершинам тетраэдра (правильной треугольной пирамиды).
Схема перекрывания электронных облаков в молекуле этана
Орбитали (три sp2и одна р) атома углерода в sp2-гибридизации
Ковалентная связь, образующаяся путем бокового перекрывания р-орбиталей соседних углеродных атомов, называется пи()-связью.
Образование-связи
Атомные орбитали (две sp и две р) углерода в состоянии sp-гибридизации
Электронное строение атома углерода
Атом углерода в возбужденном состоянии способен образовывать 4 ковалентных связи за счет 4 собственных неспаренных электронов и 4 электронов других атомов. Так, в случае углеводорода метана (СН4) атом углерода образует 4 связи с s-электронами атомов водорода. При этом должны были бы образовываться 1 связь типа s-s (между s-электроном атома углерода и s-электроном атома водорода) и 3 p-s-связи (между 3 р-электронами атома углерода и 3 s-электронами 3-х атомов водорода). Отсюда вытекает вывод о неравноценности четырех ковалентных связей, образуемых атомом углерода. Однако, практический опыт химии свидетельствует о том, что все 4 связи в молекуле метана абсолютно равноценны, а молекула метана имеет тетраэдрическое строение с валентными углами 109°, чего не могло бы быть при неравноценности связей. Ведь только орбитали р-электронов ориентированы в пространстве по взаимноперпендикулярным осям x, y, z, а орбиталь s-электрона имеет сферическую форму, поэтому направление образования связи с этим электроном было бы произвольным. Объяснить это противоречие смогла теория гибридизации. Л.Поллинг высказал предположение, что в любых молекулах не существует изолированных друг от друга связей. При образовании связей орбитали всех валентных электронов перекрываются. Известно несколько типов гибридизации электронных орбиталей. Предполагается, что в молекуле метана и других алканов в гибридизацию вступает 4 электрона.
Гибридизация орбиталей атома углерода
s + px+ py + pz = 4sp3
s + px + py + pz = 3sp2 + pz
s + px + py + pz = 2sp + py + pz
Вывод: sp3-гибридизация характерна для соединений углерода. В результате гибридизации одной s-орбитали и трех р-орбиталей образуются четыре гибридные sp3-орбитали, направленные к вершинам тетраэдра с углом между орбиталями 109°.
Размещено на Allbest.ru
Подобные документы
Развитие модельных представлений в квантовой химии. Метод валентных связей. Основные положения данного метода. Гибридизация атомных орбиталей и условия их образования. Правила выбора канонических форм. Гибридизация атома углерода и гибридных орбиталей.
презентация [284,1 K], добавлен 15.10.2013
Гибридизация – квантово-химический способ описания перестройки орбиталей атома в молекуле по сравнению со свободным атомом. Изменение формы и энергии орбиталей атома при образовании ковалентной связи и достижения более эффективного перекрывания орбиталей.
презентация [788,9 K], добавлен 22.11.2013
Представление о строении метана (молекулярная, электронная и структурная формулы). Физические свойства, нахождение в природе, тип химической связи и пространственное строение молекулы и атома углерода в трёх валентных состояниях, понятие гибридизации.
дипломная работа [21,6 K], добавлен 31.03.2009
Многообразие соединений углерода, их распространение в природе и применение. Аллотропные модификации. Физические свойства и строение атома свободного углерода. Химические свойства углерода. Карбонаты и гидрокарбонаты. Структура алмаза и графита.
реферат [209,8 K], добавлен 23.03.2009
Вращательные движения определяют важнейшие черты стационарных состояний электронных оболочек и ядер, aтомов и молекул. Гибридизация – смешение состояний с различными значениями момента импульса. Совместные измерения динамических переменных и коммутация.
Ковалентная химическая связь образуется при помощи общих связывающих электронных пар по типу:
Напомним, что в электронной формуле атома (например, для углерода 6С – 1s 2 2s 2 2p 2 ) большие цифры перед буквами – 1, 2 – обозначают номер энергетического уровня. Буквы s и р указывают форму электронного облака (орбитали), а цифры справа над буквами говорят о числе электронов на данной орбитали. Все s-орбитали сферические:
На втором энергетическом уровне кроме 2s-орбитали имеются три 2р-орбитали. Эти 2р-орбитали имеют эллипсоидную форму, похожую на гантели, и ориентированы в пространстве под углом 90° друг к другу. 2р-Орбитали обозначают 2рх, 2рy и 2рz в соответствии с осями, вдоль которых эти орбитали расположены.
Форма и ориентация р-электронных орбиталей
Схема перекрывания электронных облаков в молекуле этана
Ковалентная связь, образующаяся путем бокового перекрывания р-орбиталей соседних углеродных атомов, называется пи()-связью.
Образование -связи
Из-за меньшего перекрывании орбиталей -связь менее прочная, чем -связь. sр—Гибридизация – это смешивание (выравнивание по форме и энергии) одной s- и одной р-орбиталей с образованием двух гибридных sр-орбиталей. sр-Орбитали расположены на одной линии (под углом 180°) и направлены в противоположные стороны от ядра атома углерода. Две р-орбитали остаются негибридизованными. Они размещены взаимно перпендикулярно направлениям -связей. На рисунке sр-орбитали показаны вдоль оси y, а негибридизованные две р-орбитали– вдоль осей х и z.
Атомные орбитали (две sp и две р) углерода в состоянии sp-гибридизации
Тройная углерод-углеродная связь СС состоит из -связи, возникающей при перекрывании sp-гибридных орбиталей, и двух -связей. Взаимосвязь таких параметров атома углерода, как число присоединенных групп, тип гибридизации и типы образуемых химических связей, показана в таблице 4.
Ковалентные связи углерода
Число групп, связанных с углеродом
Тип гибридизации
Типы участвующих химических связей
Примеры формул соединений
4
sp 3
Четыре — связи
Упражнения.
1. Какие электроны атомов (например, углерода или азота) называют неспаренными?
2. Что означает понятие «общие электронные пары» в соединениях с ковалентной связью (например, СН4или Н2S)?
3. Какие электронные состояния атомов (например, С или N) называют основными, а какие возбужденными?
4. Что означают цифры и буквы в электронной формуле атома (например, С или N)?
5. Что такое атомная орбиталь? Сколько орбиталей на втором энергетическом уровне атома С и чем они различаются?
6. В чем отличие гибридных орбиталей от исходных орбиталей, из которых они образовались?
7. Какие типы гибридизации известны для атома углерода и в чем они заключаются?
8. Нарисуйте картинку пространственного расположения орбиталей для одного из электронных состояний атома углерода.
9. Какие химические связи называют и какие? Укажите— и—связи в соединениях:
10. Для атомов углерода приведенных ниже соединений укажите: а) тип гибридизации; б) типы его химических связей; в) валентные углы.
Ответы на упражнения к теме 1
Урок 5
1. Электроны, которые находятся по одному на орбитали, называют неспаренными электронами. Например, в электронографической формуле возбужденного атома углерода – четыре неспаренных электрона, а у атома азота – три:
2. Два электрона, участвующие в образовании одной химической связи, называют общей электронной парой. Обычно до образования химической связи один из электронов этой пары принадлежал одному атому, а другой электрон – другому атому:
Тогда как в основном состоянии было только два валентных неспаренных электрона, то в возбужденном состоянии таких электронов становится четыре.
5. Атомная орбиталь – это функция, которая описывает плотность электронного облака в каждой точке пространства вокруг ядра данного атома. На втором энергетическом уровне атома углерода четыре орбитали – 2s, 2рx, 2рy, 2рz. Эти орбитали различаются: а) формой электронного облака (s – шар, р – гантель); б) р-орбитали имеют разную ориентацию в пространстве – вдоль взаимно перпендикулярных осей x, y и z, их обозначают рx, рy, рz.
9. -связь – ковалентная связь, образующаяся путем лобового перекрывания орбиталей по линии, соединяющей центры атомов. -связь – ковалентная связь, образующаяся путем бокового перекрывания р-орбиталей по обе стороны от линии, соединяющей центры атомов. -Связи показывают второй и третьей черточкой между соединенными атомами.