что такое ramdac в видеокарте
RAMDAC
В последнее время многих интересовал вопрос, почему производители видеоадаптеров на базе чипсета i740 в спецификациях к своим платам указывают разные частоты RAMDAC. Например, для платы Asus V2740 заявлено значение 205 MHz, а у платы Real3D StarFighter заявлено значение 220 MHz. В данной статье мы попытались дать ответ на это вопрос, а также пояснить принципы работы RAMDAC и дать некоторые рекомендации.
RAMDAC в чипсете i740 (равно как и во всех других графических чипсетах) имеет два режима работы. В первом режиме чипсет оперирует данными цветовой гаммы, или палитры (palletized data). В этом режиме 8-битные данные конвертируются в RGB цвета. Каждому из 256 возможных значений цвета соответствует положение в цветовой палитре, которая размещается в DAC (цифро-аналоговый преобразователь). Цветовая палитра формируется и хранится в RAM (память с произвольной выборкой) — отсюда и название RAMDAC — и может быть загружена с любой комбинацией цветов. Каждый раз, когда новый пиксел передается в DAC для отображения на экране, значение передаваемых данных используется в качестве указателя положения в палитре, информация из палитры используется в качестве значения цвета для DAC.
Кстати, технология включения RAM для DAC в графический чипсет не имеет никакого отношения к так называемой Embedded RAM (Встраиваемая память). Последняя используется в качестве локальной памяти (Local Memory), также называемой буфером кадра. Некоторые графические чипсеты от C&T и NeoMagic имеют 1 или 2 МБ памяти, интегрированные в одну микросхему вместе с графическим контроллером и DAC. Однако современные 3D графические контроллеры должны иметь не менее 8 МБ памяти для буфера кадра, а интегрировать такие объемы памяти пока не позволяет существующая технология. Так что в высокопроизводительных графических чипсетах пока не будет применятся технология встраиваемой памяти. Технология Embedded RAM рассчитана на недорогие или портативные решения (когда энергопотребление и габариты важнейшие параметры).
Скорость работы RAM (в случае с чипсетом i740) при взаимодействии с DAC ограничена 205 MHz, в результате чего данные палитры не могут отображаться с частотой большей, чем 205 MHz.
Во втором режиме RAMDAC оперирует цветовыми данными. В этом режиме (при 16, 24 или 32 бит представлении цвета) данными является RGB цвет. Например, при 16-битном представлении цвета 5 бит определяют красный (Red), 6 бит — зеленый (Green) и 5 бит — синий (Blue) цвета. Для зеленого цвета используется больше бит, так как человеческий глаз более чувствителен к зеленому. При 24 или 32 бит представлении цвета для каждого из цветов используется по 8 бит данных. В этом режиме данные, определяющие цвет, передаются непосредственно в DAC без использования RAM, т.е. не используются загружаемые палитры и данные передаются напрямую из видеопамяти. Так как RAM не задействована, то нет и ограничения в 205 MHz для частоты, на которой работает DAC. Единственным ограничением является максимально возможная скорость работы DAC, в случае с чипсетом i740 это значение равно 220 MHz.
Выбор режима работы RAMDAC происходит так: операционная система Windows95/98/NT или приложение сообщает о требуемом режиме драйверу видеоадаптера, который и переводит RAMDAC в один или другой режим работы. Утилита управления режимами монитора (Display Control Panel) в Windows предоставляет возможность выбора между 8, 16 или 24/32 бит представлением цвета. Это и есть способ, с помощью которого Windows выбирает режим работы RAMDAC. Приложение, которое запускается на полный экран, может устанавливать любой, требуемый ему, режим, главное, чтобы этот режим поддерживался видеоадаптером.
Операционная система или драйвер делают запрос, чтобы определить разрешение, глубину цвета и частоту обновления экрана. Драйвер может либо реализовать полученный ответ, либо вернуть сообщение о том, что запрошенный режим не поддерживается или невозможен. В этом случае операционная система или приложение должны попробовать запросить установки другого видеорежима.
Выбор режима работы RAMDAC никак не связан с типом используемой видеопамяти.
Выбор режима, в котором работает RAMDAC, зависит от количества возможных цветов. DAC имеет разрядность 8*8*8 бит, т.е. по 8 бит на каждый RGB цвет, что соответствует способности отображать 16777216 (16М) цветов. При 8-битном представлении цвета для палитры может использоваться 256 из 16 миллионов возможных цветов. При использовании данных цветовой гаммы (палитры) активными являются только 256 цветов, которые могут отображаться на экране в любой произвольно выбранный момент времени. Впрочем, палитра может быть изменена приложением в любой момент. При 8-битной глубине представления цвета за загрузку палитры отвечает каждое приложение. При 16-битном цвете имеется фиксированный набор цветов, и для отображения могут использоваться любые цвета из 65536 (64К) доступных. При 24 или 32-битном цвете DAC может отображать любой из 16 миллионов (16М) возможных цветов.
Каждый пользователь может заметить, что при 8-битном цвете любое графическое изображение смотрится не так хорошо, как при 16-битном представлении цвета. Однако большинство пользователей не могут заметить разницы при просмотре хорошо сделанного графического изображения в режиме 16-битного и 32-битного представления цвета. Фраза «хорошо сделанное графическое изображение» означает растрирование (dithering — дизеринг) — процесс смешивания двух соседних цветов для получения третьего с одновременным обеспечением плавных переходов между элементами изображения. В результате использования технологии растрирования получаются изображения, которые смотрятся практически одинаково в режимах с разной глубиной представления цвета.
Для 16-битного представления цвета требуется в два раза больше памяти, чем для 8-битного, а для 32-битного представления цвета требуется в два раза больше памяти, чем для 16-битного. В связи с тем, что графические адаптеры имеют ограниченные объемы памяти, экономия этого ресурса становится одной из приоритетных задач. Ко всему прочему, отображение 32-битных данных зачастую происходит дольше, чем отображение 16-битных данных. А это уже относится к проблеме производительности, о чем тоже не стоит забывать. Именно поэтому обычному пользователю стоит использовать 16-битное представление цвета в Windows95/98/NT.
Пользователь или приложение выбирают тот режим представления цвета, который для них наиболее удобен. Текстовый процессор, электронная таблица и 2D игры могут прекрасно работать в режиме 8-битного представления цвета. Видеофильмы, 3D игры и 3D приложения обычно используют 16-битный режим представления цвета в качестве компромисса между качеством изображения и производительностью. При использовании программ для просмотра высококачественных фотографий, их редактирования, а так же приложений для создания графики лучше всего использовать 24/32-битное представление цвета.
Как же узнать, в каком режиме работает RAMDAC? Если Вы используете Windows, то у Вас есть возможность выбрать глубину представления цвета между режимами 8, 16 или 24/32 бит. В 8-битном режиме используется палитра, т.е. RAMDAC работает со скоростью 205 MHz, во всех других режимах с другой глубиной представления цвета палитра не используется, и RAMDAC работает со скоростью 220 MHz. Если запускается на выполнение приложение, работающее в полноэкранном режиме (например, в таком режиме работают большинство игр), то тогда само приложение определяет, в каком режиме будет работать RAMDAC. Иногда приложение, выбрав режим работы, сообщает эту информацию пользователю. Но в большинстве случаев такого не происходит.
Пользователь может узнать, в каком режиме работает RAMDAC, проделав следующие действия: найдите поверхность, в которой есть плавный переход от одного цвета к другому (как, например, в небе у вас над головой). Если переход от одного цвета к другому выглядит так, будто состоит из перемежающихся точек, сильно отличающихся по цвету, значит, ваше приложение работает в 8-битном режиме представления цвета. В противном случае, т.е. если переход от одного цвета к другому действительно плавный, ваше приложение работает с другой глубиной представления цвета. При этом, нелишне еще раз напомнить, что средний пользователь не может с уверенностью определить, с какой глубиной представления цвета он имеет дело, с 16 или 24/32 бит.
Удостовериться, что заявленные значения скорости работы RAMDAC правда, достаточно просто. Если известно, в каком разрешении вы работаете, например, 1024х768, и с какой частотой происходит обновление изображения (refresh rate), например, 75 Hz, значит можно узнать, какова скорость работы DAC. Скорости в 220 MHz вполне достаточно для отображения в режимах 1280х1024 при 85 Hz и 1600х1200 при 75 Hz. Для режима 1600х1200 при 85 Hz требуется скорость в 250 MHz. Известно, что по Европейским стандартам во всех разрешениях должна поддерживаться частота обновления экрана в 85 Hz, однако лишь немногие модели современных мониторов могут работать в режиме 1600х1200 при 85 Hz.
Напомним известные факты: если частота обновления экрана слишком низкая, то пользователю будет заметно мерцание изображения, вследствие чего можно испортить зрение. Частота обновления экрана в 75 Hz уже достаточно быстрая, чтобы глаз человека не замечал мерцания. Поэтому гораздо более разумно сосредоточить внимание на значениях частоты обновления изображения, а не на скорости работы DAC, тем более, что эти значения взаимосвязаны.
Итак, вернемся к вопросу о том, почему разные производители видеоплат на чипсете i740 указывают разные значения скорости RAMDAC. Теперь мы все точно знаем, что любой RAMDAC имеет два режима работы и, соответственно, две разные скорости. Производители видеоплат всегда, исходя из маркетинговых соображений и, чтобы не забивать головы покупателей разными цифрами, указывали в спецификациях максимальную частоту работы RAMDAC. Почему же некоторые из производителей плат на i740 стали использовать более низкие значения скорости RAMDAC? Может быть, у них в распоряжении урезанные драйверы или биосы, разрешающие работу RAMDAC только в режиме с использованием палитры? Ответ прост и банален. Обычная ошибка маркетологов, плохо понимающих, что производит и продает их компания. Кстати, к этому приложила руку и корпорация Intel, снабдив производителей неполными данными, а те, в свою очередь, не стали вдаваться в технические подробности. И действительно, чего тут думать, чипсет есть, значит можно и плату сделать. Вот все кому не лень и стали этим заниматься. Правда, не случись такой ошибки, так бы все пользователи и думали, что RAMDAC работает всегда с одной скоростью. А потребитель может сделать вывод о компетентности производителя. Если указанное значение RAMDAC у платы на базе i740 равно 205 Mhz (или еще более меньшей цифре), значит производитель этого акселератора плохо понимает, о чем вообще идет речь.
Кстати, лично нам пока известны только два производителя, которые точно знают, что такое RAMDAC — это компании Real3D и Gigabyte.
Вообще же, обычно RAMDAC в обоих режимах работает с одинаковой скоростью. В новой ревизии i740 RAMDAC будет иметь частоту 230 МГц во всех режимах. Кстати, а Вам известно, какую вторую, возможно, более медленную, скорость работы имеет RAMDAC на вашей видеоплате?
RAMDAC и TMDS
Цифро-аналоговый преобразователь (ЦАП; RAMDAC — Random Access Memory Digital-to-Analog Converter) служит для преобразования изображения, формируемого видеоконтроллером, в уровни интенсивности цвета, подаваемые на аналоговый монитор. Возможный диапазон цветности изображения определяется только параметрами RAMDAC. Чаще всего RAMDAC имеет четыре основных блока: три цифроаналоговых преобразователя, по одному на каждый цветовой канал (красный, зелёный, синий — RGB), и SRAM для хранения данных о гамма-коррекции. Большинство ЦАП имеют разрядность 8 бит на канал — получается по 256 уровней яркости на каждый основной цвет, что в сумме дает 16,7 млн цветов (а за счёт гамма-коррекции есть возможность отображать исходные 16,7 млн цветов в гораздо большее цветовое пространство). Некоторые RAMDAC имеют разрядность по каждому каналу 10 бит (1024 уровня яркости), что позволяет сразу отображать более 1 млрд цветов, но эта возможность практически не используется. Для поддержки второго монитора часто устанавливают второй ЦАП.
TMDS (Transition-minimized differential signaling — дифференциальная передача сигналов с минимизацией перепадов уровней) передатчик цифрового сигнала без ЦАП-преобразований. Используется при DVI-D, HDMI, DisplayPort подключениях. С распространением ЖК-мониторов и плазменных панелей нужда в передаче аналогового сигнала отпала — в отличие от ЭЛТ они уже не имеют аналоговую составляющую и работают внутри с цифровыми данными. Чтобы избежать лишних преобразований, Silicon Image разрабатывает TDMS.
Видеоадаптеры MDA, Hercules, EGA и CGA оснащались 9-контактным разъёмом типа D-Sub. Изредка также присутствовал коаксиальный разъём Composite Video, позволяющий вывести черно-белое изображение на телевизионный приемник или монитор, оснащенный НЧ-видеовходом.
Видеоадаптеры VGA и более поздние обычно имели всего один разъём VGA (15-контактный D-Sub). Изредка ранние версии VGA-адаптеров имели также разъём предыдущего поколения (9-контактный) для совместимости со старыми мониторами. Выбор рабочего выхода задавался переключателями на плате видеоадаптера.
В настоящее время платы оснащают разъёмами DVI или HDMI, либо DisplayPort в количестве от одного до трёх (некоторые видеокарты ATi последнего поколения оснащаются шестью коннекторами).
Порты DVI и HDMI являются эволюционными стадиями развития стандарта передачи видеосигнала, поэтому для соединения устройств с этими типами портов возможно использование переходников (разъём DVI к гнезду D-Sub — аналоговый сигнал, разъём HDMI к гнезду DVI-D — цифровой сигнал, который не поддерживает технические средства защиты авторских прав (англ. High Bandwidth Digital Copy Protection, HDCP), поэтому без возможности передачи многоканального звука и высококачественного изображения). Порт DVI-I также включает аналоговые сигналы, позволяющие подключить монитор через переходник на старый разъём D-SUB (DVI-D не позволяет этого сделать).
DisplayPort позволяет подключать до четырёх устройств, в том числе аудиоустройства, USB-концентраторы и иные устройства ввода-вывода.
Также на видеокарте могут быть размещены композитный и компонентный S-Video видеовыход; также видеовход (обозначаются, как ViVo).
Система охлаждения предназначена для сохранения температурного режима видеопроцессора и (зачастую) видеопамяти в допустимых пределах.
Также правильная и полнофункциональная работа современного графического адаптера обеспечивается с помощью видеодрайвера — специального программного обеспечения, поставляемого производителем видеокарты и загружаемого в процессе запуска операционной системы. Видеодрайвер выполняет функции интерфейса между системой с запущенными в ней приложениями и видеоадаптером. Так же, как и видео-BIOS, видеодрайвер организует и программно контролирует работу всех частей видеоадаптера через специальные регистры управления, доступ к которым происходит через соответствующую шину.
Процесс эволюции видеоадаптеров из 80-х в 2000-е
Такой важный и незаменимый компонент системы, как видеокарта, прошел долгий путь развития. На протяжении десятилетий ускорители графики совершенствовались и менялись в соответствии с прогрессирующими технологиями.
Видеоадаптеры MDA и CGA
Обе модели были выпущены компанией IBM в 1981 году. MDA изначально ориентировался на деловую сферу и создавался под работу с текстом. Работая с нестандартными вертикальными и горизонтальными частотами, этот адаптер обеспечивал четкость изображения символов. В то же время CGA поддерживал только стандартные частоты и уступал в качестве выводимого на экран текста. Кстати в IBM PC можно было использовать одновременно оба адаптера.
Монохромный видеоадаптер MDA (Monochrome Display Adapter) представлялся в качестве стандарта на мониторы, подключавшиеся к нему. MDA поддерживал исключительно текстовый режим (80 столбцов на 25 строк), без графических режимов. В качестве ядра использовался чип Motorola Motorola 6845, объем видеопамяти достигал 4 Кб. Символы изображались с помощью матрицы 9×14 пикселей, где видимая часть символа составлялась как 7×11, а остальные пиксели формировали пустое пространство между строками и столбцами. Символы могли быть невидимыми, обычными, подчеркнутыми, жирными, инвертированными и мигающими. Атрибуты можно было комбинировать. В зависимости от монитора менялся и цвет символов (белый, янтарный, изумрудный).
Рабочее разрешение экрана составляло 720×350 пикселей (80×25 символов). Поскольку адаптер MDA работал исключительно в текстовом режиме и не не мог адресовать отдельные пиксели, он просто помещал в каждое знакоместо один из 256 символов.
CGA (Color Graphics Adapter) — первая «цветная» видеокарта. В отличии от MDA, видеоадаптер CGA функционировал в графическом режиме, поддерживая как черно-белое, так и цветное изображение. В качестве ядра также использовался чип Motorola MC6845, но объем видеопамяти увеличился в четыре раза и достигал 16 Кб.
В текстовых режимах 40×25 символов эффективное разрешение экрана составляло 320×200 пикселей, а в режимах 80×25 — 640×200 пикселей. При этом подобно первой модели у CGA не было возможности обращаться к каждому пикселю отдельно. Наибольшая цветовая глубина адаптера составляла 4 бита, что позволяло использовать палитру из 16 цветов. Было доступно 256 различных символов. Из палитры можно было выбрать цвет для каждого символа и для фона.
А вот в графических режимах предоставлялась возможность обращения к любому отдельно взятому пикселю. Одновременно использовались только четыре цвета, которые определялись двумя палитрами:
1) пурпурный, сине-зелёный, белый и цвет фона (чёрный по умолчанию);
2) красный, зелёный, коричневый/жёлтый и цвет фона (чёрный по умолчанию).
Само собой, в монохромном режиме 640×200 пикселей были доступны только два цвета — белый и чёрный.
Видеоадаптер EGA
Видеоадаптер EGA пришел на смену двум предыдущим. Он был выпущен компанией IBM в 1984 году для модели ПК IBM PC/AT. По сути — это первый видеоадаптер, который смог воспроизводить нормальное цветное изображение. В EGA поддерживались как текстовый, так и графический режимы. При этом можно было использовать 16 цветов из 64 возможных при разрешении 640×350 пикселей.
Объем видеопамяти равнялся 64 Кб (но со временем увеличился до 256 Кб). Для передачи данных применялась шина ISA. Благодаря возможности процессора параллельно заполнять сегменты очень повысилась и скорость заполнения кадра. Для расширения графических функций BIOS видеоадаптер оснащался дополнительно 16 Кб ПЗУ.
EGA — первый видеоадаптер IBM, который позволял программно менять шрифты текстовых режимов. Адаптером поддерживались три текстовых режима. Первые два были стандартными:
— с разрешением 80×25 символов и 640×350 пикселей;
— с разрешение 40×25 символов и 320×200 пикселей.
А вот разрешение третьего режима составляло 80×43 символов и 640×350 пикселей. Для его использования требовалась предварительная установка режима 80×25 и загрузка шрифта 8×8 с помощью команды BIOS. Частота кадров — 60 Гц, но могла использоваться 21,8 КГц для 350 строк и 15,7 КГц для 200 строк.
Видеоадаптер MCGA
В 1987 году был выпущен многоцветный графический адаптер MCGA (MultiColor Graphics Adapter), появившийся в ранних моделях компьютеров от IBM PS/2. Он был интегрирован в материнскую плату и не выпускался в виде отдельного устройства.
Объем видеопамяти составлял 64 Кб, как и у EGA. Расширилась общая палитра — до 262 144 оттенков за счет введения 64 уровней яркости для каждого цвета. Количество выводимых цветов выросло до 256.
В 256-цветном режиме разрешение MCGA составляло 320×200 точек, с частотой обновления 70 Гц. Не было битовых плоскостей, каждый пиксель на экране кодировался соответствующим байтом. Адаптер поддерживал все режимы CGA, работал в монохромном режиме с разрешением 640×480 пикселей и частотой обновления 60 Гц.
Во время возникновения MCGA большинство игр поддерживалось лишь в 4-цветном режиме CGA. И с помощью аналогового сигнала удалось подстроиться под увеличение отображаемых цветов, сохраняя совместимость со старыми режимами. Поэтому подключение к монитору осуществлялось разъемом DB-15 семейства D-Sub.
Видеоадаптер VGA
В том же году IBM выпустила революционный адаптер VGA (Video Graphics Array). Особенностью VGA стало расположение основных подсистем на одной микросхеме, что делало видеокарту более компактной.
Архитектура VGA состояла из подсистем:
— графического контроллера, отвечающего за обмен данными между центральным процессором и видеопамятью;
— видеопамяти с объемом в 256 Кб DRAM (по 64 Кб на каждый цветовой слой);
— секвенсора, преобразовывающего данные из видеопамяти в поток битов, передаваемый контроллеру атрибутов;
— контроллера атрибутов, преобразовывающего входные данные в цветовые значения;
— синхронизатора, управляющего временными параметрами видеоадаптера и переключающего цветовые слои;
— контроллера ЭЛТ, генерирующего сигналы синхронизации для дисплея.
Отображаемых цветов стало больше и потребовались новые графические режимы. У VGA были стандартные режимы:
— с разрешением 640×480 пикселей (с 2 и 16 цветами);
— с разрешением 640×350 пикселей (с 16 цветами и монохромный);
— с разрешением 640×200 пикселей (с 2 и 16 цветами);
— с разрешением 320×200 пикселей (с 4, 16 и 256 цветами).
Программисты работали над увеличением разрешения VGA, в результате появились нестандартные, так называемые «X-режимы» на 256 цветов с разрешением 320×200, 320×240 и 360×480. Нестандартные режимы использовали плоскостную организацию видеопамяти (формирования цвета по 2 бита из каждой плоскости). Такая организация видеопамяти помогала задействовать всю видеопамять карты для формирования 256-цветного изображения. Это позволяло использовать более высокие разрешения.
В VGA поддерживались несколько видов шрифтов и режимов. Стандартный шрифт имеет разрешение 8×16 пикселей. Для работы с текстом использовались различные комбинации из нескольких режимов и видов шрифтов.
Видеоадаптер IBM 8514/A
Вслед за VGA в 1987 году вышел «профессиональный» видеоадаптер IBM 8514/A, который выпускался c 512 КБ (младшая версия) и с 1 МБ (старшая версия) видеопамяти. Он не совмещался ни с одним из предыдущих адаптеров.
При наличии 1 Мб видеопамяти IBM 8514/A, создавалось 256 цветное изображение с максимальным разрешением 1024×768 точек. В случае с 512 Кб видеопамяти, тоже разрешение давало не более 16 цветов. Версии также поддерживали меньшее разрешение 640×480 точек с 256 цветами и аппаратное ускорение графики.
Видеоадаптер использовал программный стандартизированный интерфейс «Adapter Interface» или AI.
Одной из примечательных особенностей 8514/A была поддержка аппаратного ускорения рисования, с помощью которой видеоадаптер ускорял создание линий и прямоугольников, заливку фигур и поддерживал технологию BitBLT.
У видеоадаптера IBM 8514/A имелось довольно много клонов. В большинстве из них присутствовала поддержка интерфейса ISA. Наиболее популярными из копий были адаптеры компании ATI — Mach 8 и Mach 32.
Видеоадаптер XGA
В 1990 году компания IBM сделала заявление о выходе 32-разрядного видеоадаптера XGA (eXtended Graphics Array) Display Adapter.
XGA использовал тип видеопамяти VRAM с объемом 512 Кб. Поддерживалось разрешение 640×480 точек с 16-битным цветом, а также 256-цветное изображение с разрешением 1024×768 точек.
Видеоадаптер SVGA
В 1989 году Super VGA (Super Video Graphics Array) презентовал поколение видеоадаптеров, совместимых с VGA, но способных функционировать в более высоком разрешении и с большим количеством цветов. SVGA поддерживали разрешения от 800×600 и количество цветов до 16 млн. Поскольку для устройств не было четких спецификаций, как такового, стандарта SVGA не существовало. Поэтому практически все видеоадаптеры SVGA следовали единому программному интерфейсу ассоциации производителей VESA (Video Electronic Standards Association). Стандарт VESA предусматривал использование всех разрешений. Наиболее распространенными были видеорежимы: 800×600, 1024×768, 1280×1024, 1600×1200.
Характерной особенностью SVGA стал встроенный акселератор.
Видеоадаптер S3 ViRGE
Графический чипсет S3 Virtual Reality Graphics Engine (ViRGE) один из «первопроходцев» рынка 2D/3D ускорителей. Он был выпущен в 1995 году с основной целью — ускорить трехмерную графику в реальном времени.
У S3 ViRGE был 64-битный интегрированный 2D/3D акселератор с наличием ТВ — выхода и стандартным набором фильтров. То есть в качестве монитора можно было использовать телевизионный экран. Объем памяти достигал 4 Мб, был встроенный цифро-аналоговый преобразователь на 170 МГц. Частота графического процессора составляла 66 МГц. В качестве интерфейса использовался PCI. Обеспечивалась поддержка Direct3D, BRender, RenderWare, OpenGL и собственного API S3D.
Невзирая на целевое предназначение, S3 ViRGE лучше работал в режиме 2D (например, с обработкой графического интерфейса Windows). При обработке трехмерных изображений производительность значительно падала.
Видеоадаптер ATI Rage II
С 1996 года компания ATI Technologies начала выпуск серии графических чипсетов ATI Rage с ускорением 2D, 3D графики и видео. Наиболее известной была видеокарта ATI Rage II. Графический процессор основывался на переработанном ядре Mach64 GUI, дополнялся поддержкой 3D и функцией ускорения видео формата MPEG-2. Обьем видеопамяти составлял 2 Мб, 4 Мб или 8 Мб. Частота памяти типа SGRAM достигала 83 МГц, а графическое ядро функционировало на частоте 60 МГц.
Чип также имел драйверы для Microsoft Direct3D и Reality Lab, QuickDraw 3D Rave, Criterion RenderWare, и Argonaut BRender. Rage II использовался в некоторых компьютерах Macintosh и в прототипе iMac G3 (Rage II+).
Линейка видеокарт Rage II представлялась моделями IIC, II+ и II+DVD, которые различались частотой процессора и объемом памяти. В Rage II+DVD частота ядра и памяти была 60 МГц, имелось до 83 МГц SGRAM, а пропускная способность памяти достигала 480 Мб/с.
Видеоадаптер RIVA 128
RIVA 128 (Real-time Interactive Video and Animation accelerator) был выпущен в 1997 году Nvidia. Это был первый графический процессор компании, получивший известность. Данная видеокарта сочетала в себе функции как 2D-, так и 3D-ускорителя.
RIVA 128 был спроектирован с совместимостью с Direct3D 5 и OpenGL API. На кристалле этого графического процессора, выполненного по 350-нанометровому техпроцессу, размещалось 3,5 миллиона транзисторов. Рабочая частота ядра достигала 100 МГц. Видеокарта использовала память SGRAM с объемом 4 Мб. Ширина шины памяти составляла 128 бит с пропускной способностью 1.6 ГБ/с. RIVA 128 работала через интерфейс PCI, а также через порт AGP 1x.
Видеоадаптеры Voodoo
Целое поколение видеоадаптеров выпустила компания 3Dfx. Первой разработкой молодой команды была видеокарта Voodoo Graphics, вышедшая в 1996 году. Набор аппаратных средств применялся в играх на аркадных автоматах. Первой такой игрой была ICE Home Run Derby. В последствии компания позиционировала свой продукт, как высокопроизводительные и высококачественные технологии трехмерной графики для компьютерных игр.
Графический процессор и память Voodoo Graphics работали на частоте 50 МГц, DirectX 3, PCI. Объем памяти типа EDO составлял 4 Мб. Интерфейс памяти был 64-битным. Плата осуществляла ускорение только трёхмерной графики, поэтому потребовалось наличие 2D-видеокарты для обычного двухмерного ПО. Она подключалась переходным VGA кабелем ко входу видеоконтроллера Voodoo. А во второй (выходной) разъем подключался монитор.
В 1997 году вышла новая разработка — Voodoo Rush, представляющая комбинацию чипсета Voodoo Graphics и чипсета двухмерной графики. Большая часть карт использовала двухмерный компонент AT25/AT3D от Alliance Semiconductor. Но в определенных образцах были установлены 2D-микросхемы Macronix. Voodoo Rush имел такие же характеристики, как и его предшественник, однако на практике значительно уступал в производительности. Причина состояла в использовании Voodoo Rush и CRTC двухмерного чипсета одной и той же памяти, что снижало быстродействие. Кроме того Voodoo Rush не был выведен непосредственно на шину PCI.
В 1998 году компания выпустила чипсет Voodoo2 с архитектурой Voodoo Graphics, дополненной вторым текстурным процессором. Такое добавление позволило отрисовывать две текстуры за один проход, что конечно же весьма увеличило производительность видеокарты. Чип работал только с трехмерным изображением. Его частота составляла 90-100 МГц, а в качестве памяти использовалась EDO DRAM с объемом 8 Мб и 12 Мб. Разрешение картинки достигало 1024х768 пикселей при 12 Мб памяти и 800х600 в случае с 8 Мб памяти при режиме цвета в 16 бит. Инновационной была технология SLI (Scan-Line Interleave), которая позволяла совместно работать сразу двум платам Voodoo2. Эти платы соединялись с помощью специального кабеля и каждая обрабатывала половину строк на экране.
В 1999 году компания выпустила третье поколение видеокарт — Voodoo3, совмещающих на одной плате 2D и 3D-ускорители. Частота ядра и памяти составляла 143 МГц, объем достигал 16 Мб на чипах типа SGRAM. Видеокартой поддерживался 16-битный цвет. Максимальное разрешение в режиме 3D составляло 1600×1200 пикселей. В качестве интерфейса использовались порты PCI или AGP 2x.
Видеоадаптер Matrox G200
В 1998 году компания Matrox представила свой 3D-ускоритель — G200. Архитектура видеокарты вмещала в себе много интересных технологий. Как например SRA (Symmetric Rendering Architecture), обеспечивающую чтение и запись графических данных в системную память. Такие манипуляции повышали скорость работы видеокарты. G200 поддерживал технологию VCQ (Vibrant Color Quality), использующую при визуализации 32-битный цвет вне зависимости от глубины цвета конечного изображения. То есть, все операции происходили в 32-битном режиме, а после по необходимости (если картинка была 16-битная) палитра сжималась. Таким образом удавалось добиться наилучшего качества изображения на то время.
G200 поддерживал память типа SGRAM с объемом 8 Мб или 16 Мб, а также SDRAM и встроенный RAMDAC. Для ускорения трансфера текстур из оперативной памяти, использовался DIME (Direct Memory Execute).
Чип G200 имел 128-битное ядро. В целях повышения производительности в двухмерном режиме применялась архитектура шины памяти DualBus. Она использовала две 64-разрядные шины и пару командных конвейеров. Поддерживались очень высокие разрешения, в режиме 3D — до 1280×1024 точек и 32-битной глубиной цвета.
Видеоадаптер Intel i740
В 1998 году компания Intel представил свой графический адаптер Intel i740. Данная модель в первую очередь предназначалась для систем, построенных на базе процессоров Pentium II.
Адаптер был создан с использованием 350-нанометровой технологии, частота ядра и видеопамяти составляла 66 МГЦ, ширина шины памяти — 64 бита. Объем памяти типа SDRAM или SGRAM достигал 16 Мб. В качестве интерфейса использовалась шина AGP или PCI. Видеокартой поддерживалось билинейное и трилинейное текстурирование. Максимальное разрешение составляло 1280х1024 точки в 16-битном цвете и 1600х1200 в 8-битном.
Видеоадаптеры RIVA TNT и TNT2
RIVA TNT (Real-time Interactive Video and Animation accelerator TwiN Texel, кодовое название NV4) — графический процессор компании NVIDIA, вышедший в 1998 году. Новый чип содержал 7 миллионов транзисторов, а его частота составила 90 МГц. В качестве чипов памяти использовались модули SDRAM 16 Мб, применялась 128-битная шина памяти. Глубина цвета у видеокарты достигала 32 бита с разрешением текстуры 1024×1024 точек.
Видеоадаптер RIVA TNT поддерживал технологию Twin-Texel (способность чипа работать с двумя текселами одновременно) с помощью которой можно было накладывать две текстуры на один пиксель за такт в режиме мультитекстурирования. Это значительно повысило скорость заполнения.
В 1999 году году компания выпустила видеокарту TNT2 (кодовое название NV5). Модель во многом соответствовала предшественнику, но при этом включила поддержку AGP 4X, 32MB VRAM. Еще уменьшился техпроцесс с 0,35 мкм до 0,25 мкм, что дало возможность повысить частоту процессора до 150 МГц. Был доработан блок рендеринга и поднята частота RAMDAC до 300 МГц. Это обеспечило работу видеокарты в сверхвысоких разрешениях. Добавилась функция 32-битного цвета в 3D, появилась поддержка текстур больше 2048×2048 пикселей и поддержка интерфейса AGP 4x. Всего на рынок было выведено четыре модификации TNT2.
Видеоадаптер ATI Rage 128
В 1999 году вышла видеокарта Rage 128, изготовленная по 350-нанометровому техпроцессу. Частота ядра и памяти составляла 103 МГц, RAMDAC — 250 МГц. Объем памяти доходил 32 Мб, использовалась 128-битная шина. Видеокарта поддерживала 32-битный цветовой режим.
Видеокарта поддерживала однопроходную трилинейную фильтрацию и аппаратное ускорение DVD-видео. Кроме того Rage 128 работала с технологией Twin Cache Architecture, объединяя кэш-память пикселей и текстур для увеличения полосы пропускания. Также чип обладал суперскалярным рендерингом (SSR — Super Scalar Rendering), который осуществлял обработку двух пикселей одновременно в двух конвейерах.
Видеоадаптер S3 Savage
На рынок производительных 3D-ускорителей вышла компания S3 Graphics, анонсировавшая в 1998 году выпуск видеокарты Savage 3D. Среди особенностей данного видеоадаптера выделяли однопроходную трилинейную фильтрацию, поддержку алгоритма компрессии текстур S3TC, видео стандарта MPEG-2 и наличие ТВ-выхода. Savage 3D поддерживал интерфейс AGP 2x. Объем видеопамяти составлял 8 Мб, использовалась 64-битная шина. Ядро функционировало на частоте 125 МГц. В режиме 2D достигалось разрешение 1600×1200 пикселей с частотой обновления экрана 85 Гц.
В 1999 году вышел 3D-ускоритель Savage4, производившийся по 250-нанометровому техпроцессу. Частота работы оставалась 125 МГц. Объем памяти увеличился до 32 Мб. Шина памяти осталась без изменений (64-бит).
В Savage4 появилась поддержка однопроходного мультитекстурирования и интерфейса AGP 4x. Видеокарта также поддерживала однопроходную трилинейную фильтрацию. Благодаря хорошему качеству данной фильтрации и технологии сжатия текстур S3TC, Savage4 выдавала качественное изображение. В видеокарте присутствовал DVD-декодер.
Видеоадаптер GeForce 256
Все в том же 1999 году компания NVIDIA выпустила адаптер GeForce 256 (кодовое имя NV10), который смог опередить остальных за счет отменной функциональности. Это был весьма мощный 3D-акселератор, один из первых заменивший встроенный геометрический сопроцессор. У него присутствовало четыре конвейера рендеринга с рабочей частотой 120 МГц и 32 Мб памяти SDRAM. Частота ядра в режиме 3D достигала 120 МГц. Ширина шины видеопамяти была 128-бит, а частота — 166 МГц. Поддерживалось разрешение вплоть до 2048×1536 75 Гц.
В GeForce 256 были: интегрированный геометрический процессор преобразования координат и установка освещения (T&L), кубическое текстурирование картами окружения (сube environment mapping), проекция текстур (projective textures) и компрессия текстур.