что такое mwd в бурении
Телеметрические системы типа MWD и LWD
Системы телеметрические забойные MWD предназначены для измерений в скважине азимута и зенитного угла ствола горизонтальной или наклонно-направленной скважины и угла установки отклонителя, передачи данных по гидравлическому каналу связи и дешифрации на поверхности земли измеренных параметров, индикации и регистрации азимута и зенитного угла ствола скважины, угла установки отклонителя в процессе бурения скважины гидравлическим забойным двигателем.
Описание средства измерений Принцип действия системы телеметрической забойной MWD основан на измерении в скважине в трех направлениях, с помощью трех ортогонально установленных акселерометров, значений проекций вектора силы тяжести на ось чувствительности акселерометра и измерениях в трех направлениях, с помощью трех магнитометров, проекций вектора напряженности естественного магнитного поля Земли на ось чувствительности магнитометра. На основании этих измерений вычисляются азимутальный и зенитный углы скважины, а также угол установки отклонителя. Для передачи информации с забоя скважины используется беспроводной гидравлический канал связи. Приём информации осуществляется в наземное приемное устройство – Интерфейс Безопасной Зоны (ИБЗ). При возникновении циркуляции промывочной жидкости в гидравлической линии бурового инструмента датчик определения циркуляции пульсатора формирует управляющую команду и инициализирует процесс съема и передачи инклинометрических замеров для определения зенитного угла и азимута искривления буровой скважины с целью контроля её пространственного положения. После этого скважинный прибор переключается в режим выполнения постоянных замеров для определения визирного угла сборки скважинных приборов телеметрической системы по отношению к плоскости наклона.
Другой тип данных, передаваемых на поверхность во время бурения – это гамма-каротаж. Кривая каротажа естественной гамма-активности позволяет получить представление о геологии пласта, в котором в данный момент проводится горизонтальная скважина. Путем сравнения значений гамма-каротажа, поступающих из горизонтальной скважины во время бурения со значениями гамма-каротажа опорной скважины, специалист по геонавигации принимает решение о геометрии пласта и дальнейшем направлении проводки скважины.
В отличии от MWD, системы каротажа во время бурения (LWD) имеют более сложные каротажные приборы в составе бурильной компоновки. Другими словами, в дополнение к измерениям инклинометрии специалист по геонавигации получает еще целый ряд различных каротажных данных в режиме реального времени, в т.ч. спектральный гамма-каротаж, нейтронный и плотностной каротажи, каротажи сопротивления, акустические каротажи и пр.
Данные каротажа во время бурения дают дополнительные возможности для эффективной проводки горизонтальных скважин по сравнению со стандартной геонавигацией на основе данных MWD, помогая инженерам проводить детальный анализ строения пласта в процессе бурения, и служат основой для принятия важных решений при корректировки траекторий скважин, особенно в районах с низкой изученностью строения и характеристик пласта.
В бурении такие передовые научные разработки как каротажные приборы LWD позволяют значительно увеличить эффективность процесса бурения и минимизировать связанные с этим риски, но, как правило, они более дорогие, чем стандартные приборы MWD. Поэтому услуги по каротажу во время бурения изредка заказываются лишь крупными нефтегазовыми компаниями, которые сфокусированы на максимальной эффективности и безопасности бурения.
Приборы LWD также могут записывать и передавать в высоком разрешении изображения стенок скважины, так называемые имидж-логи. Разрешение имидж-логов зависит от типа данных: сопротивление, плотность, гамма. Данные имидж-логов скважины наиболее ценны для оптимизации процесса проводки скважины (геонавигации). Имидж-логи могут интерпретироваться в режиме реального времени и являются основой для оценки истинных углов наклона пласта, в котором проводится скважина, а также для выявления разломов и трещин, пересекаемых скважиной. Благодаря этим данным о строении пласта, получаемым в режиме реального времени, специалист геонавигации может более качественно осуществить проводку скважины в пласте.
Что такое mwd в бурении
Наклонно-направленное бурение давно стало основным видом бурения как на суше, так и на море при бурении скважин с платформ различных типов. Одновременно с развитием наклонно-направленного бурения существует тенденция повышения требований к точности попадания забоя скважин в заданную точку и к соблюдению проектного профиля скважины. В связи с этим возникает необходимость обеспечения эффективного контроля пространственного положения ствола скважины. При бурении наклонно-направленных скважин применяется комплекс маркшейдерских работ, включающий специальное оборудование, инструмент, приборы, особые технологические приемы, и связанный как с заданием направления ствола скважины, так и с постоянным контролем за положением оси ствола скважины в пространстве. Последнее является задачей инклинометрии.
Создание телеметрических систем контроля за положением отклоните-ля, забойными параметрами ствола скважины в процессе бурения (включая устройства управления режимами бурения) придало значительный импульс научно-техническому прогрессу в области бурения скважин на нефть и газ. В настоящее время телеметрические системы контроля в сочетании с методико-математическим и программным обеспечением дали технологам небывалые возможности, в корне изменив методы их работы.
Азбука телеметрических систем
В общем случае телеметрические системы осуществляют измерение первичной скважинной информации, ее передачу по каналу связи забой — устье, прием наземным устройством, обработку и представление оператору результатов обработки. Существующие телесистемы включают следующие основные части:
— забойную аппаратуру;
— наземную аппаратуру;
— канал связи;
— технологическую оснастку (для электропроводной линии связи);
— антенну и принадлежности к ней (для электромагнитной линии связи);
— немагнитную УБТ (для телесистем с первичными преобразователями азимута с использованием магнитометров);
— забойный источник электрической энергии (для телесистем с беспроводной линией связи).
Забойная часть телесистемы включает первичные преобразователи измеряемых параметров, таких как:
— первичные преобразователи (ПП) направления бурения;
— ПП геофизических параметров приствольной зоны скважины;
— ПП технологических параметров бурения.
К первичным преобразователям направления бурения относятся:
— ПП зенитного угла в точке измерения (а);
— ПП азимута скважины (j);
— ПП направления отклонителя (у).
К первичным преобразователям геофизических параметров (данных каротажа) можно отнести геофизические зонды, измеряющие:
— КС — кажущееся сопротивление горных пород;
— ПС — самопроизвольную поляризацию;
— гамма-каротаж (гамма естественного излучения горных пород);
— электромагнитный каротаж.
К первичным преобразователям технологических параметров бурения можно отнести датчики, измеряющие параметры процесса бурения:
— осевую нагрузку на долото (G);
— момент (М) реактивный или активный;
— частоту вращения (n) долота;
— давление внутри и снаружи бурильной колонны;
— другие, по желанию заказчика, а также в зависимости от аппаратурных возможностей телесистемы.
Данные от первичных преобразователей через коммутатор поступают на аналого-цифровой преобразователь (АЦП), затем через кодирующее устройство (КУ), усилитель-передатчик поступают в канал связи. На поверхности закодированная различными способами информация расшифровывается в обратном порядке и поступает на системы отображения и обработки для принятия решений по технологическому режиму.
Что такое mwd в бурении
11.Системы передачи информации в процессе бурения.
Ø Кабельные системы.
«+» максимальная информативность, быстрота получения сигнала, помехоустойчивость, 2-х сторонняя связь, источник энергии на поверхности, работа с воздухом и аэрированными пром. жидк.
«-» наличие кабеля в (на) колонне, невозможность вращения колонны и закрытия ПВО.
Ø Электромагнитный канал.
«+» высокая информативность, низкая стоимость систем
«-» дальность зависит от глубины перемежаемости пород, низкая помехоустойчивость.
Ø Гидравлический канал :
— система на «+» импульсах (регистрируется ↑ давл. внутри бурильных труб).
— система непрерывных волн.
«+» применение без нарушения технологических процессов, независимость от глубины и пород.
«-» низкая скорость сигнала, низкая помехоустойчивость, необходимость в забойном источнике питания, невозможность работы с воздухом и аэрированными пром. жидк
12.Методы вычисления результатов измерений.
13.Устройство и принцип работы датчиков (магнитометры, акселерометры):
Магнитометры – состоят из двух параллельно расположенных катушек на которые подается напряжение определенной величины, в зависимости от расположения по отношению к магнитному полю земли скорость намагничивания катушек меняется, эти показания снимаются и переводятся в значения азимута скважины.
Акселерометр (Равновесный) – внутри корпуса с внешней обмоткой, в жидкости, находится магнит который удерживается в центральной позиции переменным током, при отклонении от горизонтального расположения корпуса акселерометра, магнит начинает перемещение и величина тока изменяется. Эти показания снимаются и переводятся в значении зенитного угла.
Акселерометр (Кварцевый стержневой) – магнит прикреплен на тонких подвесах к корпусу, переменный ток используется для удержания магнита в центральной позиции, при отклонении от горизонтального расположения корпуса акселерометра, магнит начинает перемещение и величина тока изменяется. Изменение отклика выходного напряжения переводятся в значении зенитного угла.
14.Установка датчика давления – датчик давления располагается в манифольдной линии или на стояке, на достаточном удалении от буровых насосов, мест резких перегибов направления линии высокого давления (для уменьшить вероятность возникновения помех) лучше в тёплом помещении.
Накачка компенсатора (гаситель пульсации) 30-40% от рабочего давления.
15.Промывочные жидкости: (параметры, единицы, физический смысл)
В – водоотдача (см3/30 мин.) Количество жидкой фазы отфильтровывающееся в стенки скважины из ПЖ.
ρ – удельный вес (г/см3). Вес единицы объема бурового раствора.
λ – липкость (град.) фрикционные свойства промывочной жидкости на сопротивление движению инструмента по поверхности фильтрационной корки.
П – содержание песка (%). Влияет на абразивные свойства бурового раствора.
СНС – статическое напряжение сдвига (мПа*с). Усилие для перевода ПЖ из состояния геля в жидкость.
ДНС – динамическое напряжение сдвига (сП). Усилие в промывочной жидкости при ее протекании.
По-русски — телеметрия, по-английски — MWD
О.К. РОГАЧЕВ, к.т.н.,
ОАО НПО «Буровая техника» — ВНИИБТ
Наклонно-направленное бурение давно стало основным видом бурения как на суше, так и на море при бурении скважин с платформ различных типов. Одновременно с развитием наклонно-направленного бурения существует тенденция повышения требований к точности попадания забоя скважин в заданную точку и к соблюдению проектного профиля скважины. В связи с этим возникает необходимость обеспечения эффективного контроля пространственного положения ствола скважины. При бурении наклонно-направленных скважин применяется комплекс маркшейдерских работ, включающий специальное оборудование, инструмент, приборы, особые технологические приемы, и связанный как с заданием направления ствола скважины, так и с постоянным контролем за положением оси ствола скважины в пространстве. Последнее является задачей инклинометрии.
Создание телеметрических систем контроля за положением отклоните-ля, забойными параметрами ствола скважины в процессе бурения (включая устройства управления режимами бурения) придало значительный импульс научно-техническому прогрессу в области бурения скважин на нефть и газ. В настоящее время телеметрические системы контроля в сочетании с методико-математичес-ким и программным обеспечением дали технологам небывалые возможности, в корне изменив методы их работы.
Азбука телеметрических систем
В общем случае телеметрические системы осуществляют измерение первичной скважинной информации, ее передачу по каналу связи забой — устье, прием наземным устройством, обработку и представление оператору результатов обработки. Существующие телесистемы включают следующие основные части:
Забойная часть телесистемы включает первичные преобразователи измеряемых параметров, таких как:
К первичным преобразователям направления бурения относятся:
Данные от первичных преобразователей через коммутатор поступают на аналого-цифровой преобразователь (АЦП), затем через кодирующее устройство (КУ), усилитель-передатчик поступают в канал связи. На поверхности закодированная различными способами информация расшифровывается в обратном порядке и поступает на системы отображения и обработки для принятия решений по технологическому режиму.
Каналы связи
На протяжении многих лет основным препятствием для практического использования измерений в процессе бурения был канал связи. Он является основным и решающим фактором, так как именно от него зависит конструкция телесистем, компоновка, информативность, надежность, удобство работы, а также условия прохождения сигналов.
Диапазон существующих в настоящее время каналов весьма широк, и представлен гидравлическим, электромагнитным, акустическим, электропроводным и многими другими типами каналов связи (РИС. 1).
В результате многолетних исследований и практического использования в реальных условиях бурения широкое применение нашли три канала связи:
У каждого из этих каналов связи имеются свои преимущества и недостатки. Разнообразие условий бурения, а также экономическая целесообразность определяют каждому каналу связи свою область применения. Остановимся подробнее на преимуществах и недостатках каждого из рассматриваемых каналов связи.
Электропроводной канал связи (ЭКС)
ЭКС в России в силу многих причин нашел значительное, но недостаточное применение. Этот канал обладает преимуществом перед всеми известными каналами связи — это максимально возможная информативность, быстродействие, многоканальность, помехоустойчивость, надежность связи; отсутствие забойного источника электрической энергии и мощного передатчика; возможность двусторонней связи; не требует затрат гидравлической энергии; может быть использован при работе с продувкой воздухом и с использованием аэрированной промывочной жидкости. К недостаткам электропроводного канала связи относятся наличие кабеля в бурильной колонне и за ней, что создает трудности при бурении; затраты времени на его прокладку; необходимость защиты кабеля от механических повреждений; невозможность вращения колонны (неактуально при применении токосъемника, устанавливаемого под вертлюгом); невозможность закрытия превентора при нахождении кабеля за колонной бурильных труб; необходимость доставки (продавки) забойного модуля или контактной муфты до места стыковки (посадки) при зенитных углах более 60° с помощью прода-вочного устройства (имеются варианты проложения кабеля внутри труб через вертлюг).
Гидравлический канал связи (ГКС)
Телесистемы с ГКС отличаются от других наличием в них устройства, создающего в потоке бурового раствора импульсы давления. Для генерирования импульсов давления в буровом растворе используются несколько различных по типу устройств. Сигнал, создаваемый ими, подразделяется на три вида: положительный импульс, отрицательный импульс или непрерывная волна (РИС. 2).
Положительные импульсы генерируются путем создания кратковременного частичного перекрытия нисходящего потока бурового раствора. Отрицательные — путем кратковременных перепусков части жидкости в затрубное пространство через боковой клапан. Гидравлические сигналы, близкие к гармоническим, создаются с помощью электродвигателя, который вращает клапан пульсатора. Гидравлические импульсы со скоростью около 1250 м/с поступают по столбу бурового раствора на поверхность, где закодированная различными способами информация декодируется и отображается в виде, приемлемом для восприятия оператором.
Предпочтение в применении телесистем с ГКС базируется как на относительной простоте осуществления связи по сравнению с другими каналами связи, так и на том, что этот канал не нарушает (по сравнению с ЭКС) технологические операции при бурении и не зависит от геологического разреза (по сравнению с ЭМКС). Недостатки данного канала связи — низкая информативность из-за относительно низкой скорости передачи, низкая помехоустойчивость, последовательность в передаче информации, необходимость в источнике электрической энергии (батарея, турбогенератор), отбор гидравлической энергии для работы передатчика и турбогенератора, невозможность работы с продувкой воздухом и аэрированными жидкостями.
Электромагнитный канал связи (ЭМКС)
Системы с ЭМКС используют электромагнитные волны (токи растекания) между изолированным участком колонны бурильных труб и породой. На поверхности земли сигнал принимается как разность потенциалов от растекания тока по горной породе между бурильной колонной и приемной антенной, устанавливаемой в грунт на определенном расстоянии от буровой установки (РИС. 3).
К преимуществам ЭМКС относится несколько более высокая информативность по сравнению с гидравлическим каналом связи. К недостаткам — дальность связи, зависящая от проводимости и перемежаемости горных пород, слабая помехоустойчивость, сложность установки антенны в труднодоступных местах.
В ТАБЛ. 1 приводятся сравнительные характеристики телеметрических систем российских и зарубежных производителей с каналами связи различных типов.
Учитывая недостатки применяемых каналов связи, необходимо их совершенствовать, а также разрабатывать новые каналы, так как разнообразные горно-геологические условия, различные технико-технологические аспекты проводки скважин и экономические факторы предъявляют более высокие требования к информативности процесса бурения.
Представляет интерес возможность использования комбинированного канала связи. Суть этого вида связи заключается в использовании нескольких каналов связи одновременно — как вариант, это могут быть гидравлический, электромагнитный, механический и частично электропроводный, например, как ретранслятор. Для реализации этого вида связи в телеметрической системе устанавливаются гидравлический пульсатор и электромагнитный передатчик. Информация принимается на поверхности обычным способом для этих каналов связи. По механическому каналу связи принимается информация по вибрации долота. Электропроводной канал может быть использован для частичного погружения в колонну бурильных труб или за трубами для приема и ретрансляции ослабленных информационных сигналов от телеметрической системы при больших глубинах. Применение комбинированного канала связи позволит частично решить многолетние споры о перспективности дальнейшего использования того или иного канала связи забой — устье.
По пути усложнения
Одним из важных достижений в области совершенствования телеметрических систем являются модульные системы. Рассчитанные на максимальную эффективность и гибкость, эти системы более дешевы и экономичны по сравнению с любыми другими. Все оборудование такой системы имеет модульную конструкцию с полной совместимостью модулей, что дает возможность приобретать его в любом наборе, в виде отдельных секций или полным комплектом. Использование подобных систем помимо контроля навигационных и технологических параметров позволяет частично проводить комплекс геофизических исследований без остановки процесса бурения (технология logging while drilling (LWD) — геофизические исследования в процессе бурения). В частности, с помощью систем подобного типа можно осуществлять контроль за следующими параметрами:
Однако при современном уровне развития техники и технологий бурения информация о характеристиках пласта, получаемая в процессе бурения, является недостаточной. Необходимо иметь данные о кровле и подошве пласта, информацию о разрезе впереди долота, а также информацию о приближении к соседним скважинам, что особенно важно при разбу-ривании морских месторождений, где количество скважин, построенных относительно близко друг от друга, достигает нескольких десятков.
Усложнение процесса бурения стимулирует дальнейшее развитие разработок телеметрических систем. Основными направлениями совершенствования являются: увеличение количества измеряемых и передаваемых на поверхность параметров бурения, скорости передачи информации; создание в забойных устройствах автоматов, самостоятельно управляющих процессом проводки скважин (управляемый отклонитель, прибор корректирования нагрузки на долото и др. механизмы); использование двухсторонней связи забой — устье. Существенное повышение точности и качества проводки высокотехнологичных скважин невозможно без совершенствования наземного бурового комплекса, способного автономно или при минимальном вмешательстве оператора осуществлять бурение в продуктивном пласте с учетом особенностей его фактического строения. Создание интеллектуально-автоматизированной буровой установки, которая будет контролировать и корректировать работу бурильщика, а в некоторых случаях — осуществлять бурение скважины или выполнение определенных операций в автоматическом режиме, является одним из приоритетных направлений зарубежных и отечественных производителей бурового оборудования.
Принципиальная блок-схема комплекса автоматического управления бурением скважины представлена на РИС. 4.
Система включает два комплекса параметров: забойные (телеметрическая система) и наземные (система контроля наземных параметров бурения). Возможности забойной части системы по сбору и первичному преобразованию данных подробно описаны выше. Система наземного контроля может быть представлена станцией геолого-технического контроля.
Основными задачами системы автоматизированного управления проводкой скважины являются:
Система автоматизированного управления проводкой наклонных и горизонтальных скважин позволит повысить качество строительства скважин, точность выполнения проектов, исключить субъективные ошибки персонала буровой установки даже при среднем уровне его квалификации, что даст существенную экономию при строительстве скважин.
Технология за круглым столом: MWD
Как телеметрические системы для проведения скважинных измерений в процессе бурения (системы MWD) позволяют улучшить эффективность бурения и изученность коллектора?
Baker Hughes: Вначале, позвольте вернуться к принятой в отрасли классификации телеметрических систем (MWD) и систем каротажа в процессе бурения (LWD): телеметрические системы обеспечивают данными по инклинометрии (траектории ствола скважины), забойной температуре, давлению, динамическим параметрам бурения и, в некоторых случаях, гамма-каротажу; системы же каротажа в процессе бурения LWD обеспечивают данными по свойствам горных пород и пластовых флюидов, таких как вода, нефть, газ, технически позволяя отказаться от традиционного комплекса ГИС в открытом стволе. При этом системы каротажа в процессе бурения LWD всегда используются в едином комплексе с телеметрической системой MWD для фактического рассчета траектории буримой скважины. Таким образом, телеметрические системы MWD, как отдельный сервис, имеют очень ограниченные возможности для изучения коллектора: гамма каротаж служит для измерения естественной радиоактивности горных пород, позволяя только качественно определять геологию буримого разреза (сланцы-песчанники-карбонаты) и проводить корреляцию с соседними скважинами для уточнения глубин залегания пластов.
С точки зрения эффективности бурения, системы MWD обладают гораздо большими возможностями. Развитие технологии идет по четырем основным направлениям:
» совершенствование навигационных датчиков и обрабатывающего программного обеспечения для повышения точности проводки ствола скважины
» увеличение скорости передачи данных для сокращения времени на измерения при бурении
» расширение комплекса регистрируемых и передаваемых данных измерениями динамических параметров бурения и давления внутри- и затрубного пространства для выбора оптимальных режимов бурения, промывки скважин и плотности бурового раствора, сокращая время строительства скважины и снижая риски, связанные с дифференциальными прихватами и гидроразрывами.
» повышение надежности скважинного оборудования MWD и сокращение непроизводительного времени, связанного с отказами оборудования.
GE Oil&Gas: Телеметрические системы позволяют улучшить эффективность бурения, обеспечивая точное размещение скважин и предоставляя информацию о динамике бурения в реальном времени для оптимизации параметров бурения и улучшения скорости проходки и долговечности скважины. Оперативная информация о состоянии пласта, полученная с помощью замеров гамма-излучения, сопротивления и других телеметрических измерений позволяют оператору регулировать траекторию скважины в реальном времени, чтобы обеспечить размещение скважины в наиболее продуктивной части пласта.
Halliburton: Технология измерений во время бурения (MWD) может использоваться для определения траектории скважины в трехмерном пространстве, а также установления истинной глубины по вертикали, расположения забоя и ориентации направляемых буровых систем.
Системы позволяют измерять ряд параметров для буровой колонны, КНБК и ствола скважины, что обеспечивает бурение согласно плану и позволяет выявлять обстоятельства, которые могут привести к повреждению оборудования или другие чреватые простоями условия. Измерения в процессе бурения дают возможность своевременных действий по сохранению проектной траектории ствола скважины.
Указанные измерения позволяют получать информацию о:
» Силах, воздействующих на буровую колонну и КНБК, включая динамическиехарактеристики и вибрацию
» Статическое и динамическое давление внутри буровой колонны и в затрубном пространстве
» Размеры и форму самого ствола скважины
Каротаж во время бурения (LWD), включающий широкий спектр датчиков (система с точным контролем давления PCD, датчик гамма-излучения (PCG, DGR), датчики сопротивления (EWR™, ADR™, AFR™), плотности (ALD™), нейтронные (CTN™), ультразвуковые датчики (XBAT™), позволяют в реальном времени получать данные для направленного бурения горизонтальных скважин и скважин с большими отходами, что обеспечивает эффективное использование дорогостоящего времени работы буровой. Использование забойной КНБК позволяет проводить каротаж в горизонтальных скважинах, что не возможно при использовании кабеля. А каротаж в режиме реально времени, в свою очередь позволяет давать своевременные корректировки для расположения ствола скважины в пласте с оптимальными ФЭС.
Phoenix Technology Services Russia: Что такое телеметрическая система для проведения скважинных измерений в процессе бурения – система MWD. Основное предназначение телеметрической системы MWD заключается в определении и передаче в режиме реального времени во время бурения на поверхность данных инклинометрии (зенитного угла и магнитного азимута) для определения пространственного положения (траектории) скважины. При этом данные инклинометрии очень часто дополняются информацией о параметрах бурения, температуре на забое и гамма-каротажом. Гамма-каротаж позволяет измерять естественную радиоактивность горной породы, разделяя геологический разрез на глинистую и не-глинистую составляющие, что хорошо работает особенно в условиях терригенного разреза Западной Сибири и не только. В случае применения, для более детального изучения свойств коллектора, различных систем каротажа во время бурения LWD телеметрическая система MWD, кроме прочего, выполняет роль связующего звена – передает данные на поверхность. На сегодняшний день телеметрические системы MWD стали абсолютной неотъемлемой частью при бурении наклонных и горизонтальных скважин. Без применения телеметрических систем практически невозможно решать задачи, которые перед буровиками ставят геологи – выполнение необходимых траекторий скважин и попадание в геологические цели. С точки зрения применения телеметрических систем MWD для повышения эффективности бурения, то цель здесь проста – бурение скважины без отклонений от плановой траектории и без непроизводительного времени из-за отказов оборудования. Для компании Phoenix Technology Services это является главной целью. Основной и единственный бизнес для Phoenix Technology Services – это телеметрическое и инженерное сопровождение наклонно-направленного бурения.
Weatherford: В качестве примера приведу передовые датчики вибрации TVM2 компании Weatherford, которые позволяют осуществлять мониторинг движения буровой колонны для предотвращения вибраций, завихрений и скачков долота на забое. А применение системы Comanche позволяет осуществлять оперативный анализ крутящего момента, контролировать нагрузку на долото и частоту вращения, получать информацию для моделирования скручивающих и осевых нагрузок на бурильную колонну и контролировать поведение КНБК – все это позволяет задать оптимальные параметры бурения для повышения надежности работы всей забойной компоновки и каждого из ее компонентов.
Новые высококачественные данные о пласте можно получить, используя передовой комплекс каротажных приборов LWD компании Weatherford. Такие инструменты, как прибор акустического каротажа ShockWaveTM, испытатель пластов PressureWaveTM и имиджер микрокаротажа SineWaveTM предоставляют заказчику разноплановую информацию: данные о поровом давлении, информацию о выявленных трещинах и наслоениях, показатели прочности породы и пористости пласта, а также проницаемость.
Все больше горизонтальных скважин бурится в России: наблюдается ли рост использования систем MWD в регионе и каким вам видится рост этого сектора отрасли в ближайшие годы?
Baker Hughes: Полностью согласен с вашим утверждением – объемы горизонтального бурения в России неуклонно возрастают год от года. При этом горизонтальное бурение используется как инструмент поддержания добычи как на зрелых месторождениях, так и при разработке новых. Причина очевидна – при сравнительно близких удельных затратах на бурение вертикальной или наклонно-направленной скважины, горизонтальная скважина обеспечивает гораздо большую зону дренирования и, соответственно, большие дебиты. Кроме того, горизонтальное бурение широко применяется при разработке морских месторождений, позволяя разбуривание большей площади с одной или всего нескольких морских платформ. Исходя из преимуществ горизонтального бурения, мы считаем, что в ближайшие годы объемы горизонтального бурения с применением телеметрических систем MWD в комплексе с системами каротажа LWD будут только расти.
GE Oil&Gas: С увеличением строительства операторами горизонтальных скважин, все большую значимость получают точные и высокоэффективные телеметрические системы, позволяющие размещать такие скважины с минимальными простоями. Наблюдаемый на многих нетрадиционных месторождениях резкий спад производства говорит о необходимости применения постоянной программы бурения для восстановления добычи.
Halliburton: Рост активности в сфере бурения горизонтальных скважин стал причиной растущего спроса на услуги каротажа в реальном времени. По мере того, как объектами бурения становятся пласты все меньшей мощности, возникает необходимость более точного расположения ствола для обеспечения максимальной продуктивности скважин. Кроме того, сложности проведения каротажа c применением кабеля на горизонтальных окончаниях скважин, нежелание местных операторов использовать методы каротажа на трубах и возможность осуществления геонавигации, так же приведет к росту использования MLWD систем.
Phoenix Technology Services Russia: Как я уже сказал, использование телеметрических систем MWD — обязательное условие при бурении горизонтальных скважин. Соответственно, при увеличении объема бурения таких скважин неизбежен аналогичный рост применения телеметрических систем MWD.
Weatherford: В последнее время мы наблюдаем устойчивый рост в этом направлении, однако значительно чаще наши заказчики применяют услуги каротажа в процессе бурения LWD, а не проведение измерений MWD. Это обусловлено ростом количества пробуренных наклонно-направленных скважин относительно числа разведочных скважин в отдаленных регионах. А это, в свою очередь, означает, что все более востребованной становится информация, получаемая непосредственно в процессе бурения, из-за сложности доставки и дополнительных расходов на осуществление спуска каротажных приборов на кабеле. Кроме того, интерес к разработке месторождений с нетрадиционными ресурсами, несомненно, позитивно повлияет на увеличение регионального спроса на каротажные системы LWD.
Когда оператору стоит воспользоваться телеметрическим MWD инструментом?
Baker Hughes: Основная задача телеметрических систем – проводка ствола скважины по заданной траектории и попадание в обусловленные геологические цели. Для выполнения данных задач требуется правильный выбор оборудования, исходя из его спецификаций, и строгое соблюдение условий эксплуатации.
GE Oil&Gas: Оператору следует рассмотреть использование телеметрического MWD инструмента при необходимости отхода от вертикали, либо при отклонении скважины от вертикали более чем на 5 градусов. Также телеметрические системы используются, когда для уточнения геологических параметров в процессе поиска продуктивных пластов необходимо использовать гамма-каротаж. В некоторых регионах, предоставления оператором гамма-каротажных диаграмм требуют регулирующие органы.
Halliburton: Системы MWD дают преимущества в скважинах с большими отходами, где каротаж на кабеле затруднен и отнимает много времени, а также при работе в дорогостоящих средах (таких как глубоководные скважины), где использование MWD/LWD позволяет экономить значительное время и средства по сравнению с операциями на кабеле.
Phoenix Technology Services Russia: Телеметрические системы MWD обязательны при бурении любых наклонных и горизонтальных скважин. Тип телеметрической системы MWD необходимо выбирать уже на стадии планирования бурения, в зависимости от эксплуатационных характеристик и ограничений оборудования, геологического разреза и поставленных задач.
Weatherford: MWD будет востребован, если план строительства скважины требует отклонения в определенном направлении с целью достижения проектной глубины или для того, чтобы предотвратить проходку через специфические пласты/пропластки, а также в случае необходимости остаться в границах лицензионного участка. Кроме того, MWD инструменты востребованы там, где высок риск бурения незапланированных боковых стволов в рыхлых пластах.
При широком спектре доступных на рынке MWD систем, как оператору не ошибиться с выбором?
Baker Hughes: В процессе работы, ведется сбор и анализ статистических данных по ключевым параметрам эффективности, так что операторы имеют очень четкое представление об отличиях, преимуществах и недостатках оборудования различных сервисных компаний. В конечном итоге, кроме конструкции и спецификаций самой системы MWD, на эффективность работы в огромной степени влияет квалификация линейного персонала сервисной компании и уровень обслуживания оборудования в ремонтных и сервисных центрах – так что, я бы рекомендовал операторам при выборе телеметрической системы так же оценивать профессиональную подготовленность персонала, затраты на обучение и повышение квалификации сотрудников, оснащение ремонтной базы, наличие системы контроля качества обслуживания, строгое следование процедурам и политикам сервисной компании.
GE Oil&Gas: Принимая решение о покупке телеметрических MWD систем, оператору необходимо учитывать ряд факторов и эксплуатационных требований. Оператору необходимо понимать ожидаемые условия эксплуатации и выбирать оборудование, отвечающее соответствующим требованиям.
Критические параметры, которые имеют значение при выборе телеметрического оборудования: максимальная температура и давление; характеристики бурового раствора; планируемые траектории скважин и их размеры; возможные осложнения при бурении, такие как зоны поглощения промывочной жидкости; концентрация H2S и геологический профиль удельных сопротивлений.
Рассмотрение этих факторов позволит выбрать правильный для конкретной области применения тип телеметрического оборудования – с гидроимпульсным или электромагнитным каналом связи, фиксированной установки или извлекаемого типа. При выборе телеметрической системы также следует рассмотреть ее совместимость с прочими компонентами КНБК, такими как Роторные Управляемые Системы и возможность компоновки забойной части телеметрической системы дополнительным КВБ оборудованием.
Halliburton: Примерно треть трудноизвлекаемых запасов относятся к карбонатным коллекторам. Рекомендуется использовать приборы акустического каротажа, такие как новая услуга XBAT по проведению азимутального акустического и ультразвукового каротажа и азимутальные датчики для фокусированного измерения сопротивления AFR.
Для сложных в геологическом отношении пластов с сильной латеральной и вертикальной изменчивостью будет полезно использовать прибор для гамма-каротажа около долота и инклинометр (GABI™). Очень важно, чтобы сервисный инженер тесно работал с заказчиком для обеспечения правильного выбора сенсоров, что поможет принять самое действенное и эффективное решение.
Phoenix Technology Services Russia: Прежде всего, это должна быть проверенная система, обеспечивающая качественное решение поставленных задач: точные измерения и надежную передачу данных на поверхность. Например, как телесистема MWD “P-360” компании Phoenix Technology Services – простая и надежная, с гарантированным ресурсом не менее 350 часов. В тоже время, кроме характеристик забойного оборудования, необходимо учитывать уровень и качество сервиса по наклонно-направленному бурению предоставляемого той или иной компанией. Уровень и качество сервиса во многом определяется подходом компании к организации бизнеса и производства в целом. Это и квалификация персонала, и качественное обслуживание оборудования, и наличие ресурсной базы, и многое другое.
Weatherford: Прямое и открытое обсуждение проекта с сервисными компаниями позволит оператору подобрать наиболее оптимальный комплекс приборов. Затем необходимо решить, каким должен быть объем требуемой информации, следует ли воспользоваться дополнительными инструментами, и будет ли это рентабельно и эффективно. Какие датчики необходимы для того, чтобы оставаться в нужном пласте и избежать лишних метров проходки? Какие приборы понадобятся для получения необходимой информации для заканчивания скважины и достижения всех поставленных целей? Каким может быть результат в случае получения дополнительной информации? Каковы потенциальные риски в случае отсутствия замеров давления при репрессии на пласт? Вот те важнейшие вопросы, которые должны быть обязательно заданы и на которые необходимо получить ответы оператора при технической поддержке и сопровождении операций сервисной компанией.
В России наибольшее количество самых сложных нефтяных месторождений на планете – существуют ли ограничения по условиям эксплуатации MWD систем?
Baker Hughes: Естественно, существуют. Любое оборудование имеет свои спецификации, ограничения по условиям применения и предъявляет определенные требования к оснащению буровой установки. Условия бурения на большей части месторождений в России вполне соответсвуют стандартному оборудованию MWD, однако, есть и месторождения, отличающиеся высокими забойными температурами, повышенными давлениями, агрессивной коррозионной средой – данные условия требуют применения специального оборудования MWD. Кроме того, в последние годы растет число пробуренных скважин ERD (сверхглубоких), строительство которых, в свою очередь, предъявляет повышенные требования к оборудованию MWD.
GE Oil&Gas: Один из вызывающих озабоченность вопросов – часто встречающийся в России высокий уровень H2S. Из-за высокого содержания H2S, оборудование требует частой замены запчастей для поддержания высокого значения средней наработки на отказ. При проведении регулярного техобслуживания, другие известные факторы окружающей среды не представляют проблем для линейки инструментов GE.
Halliburton: Для некоторых MWD/LWD систем агрессивные скважинные условия (такие как высокие температуры) могут представлять сложность. Halliburton предлагает несколько систем MWD оснащенных для работы при температурах до 175°С, включая гамма-каротажные приборы, измерители сопротивления EWR-Phase 4™, акустические приборы прибор измерения давления и BAT™/QBAT™. Кроме того, Halliburton предлагает датчики для наклонного бурения, приборы гамма-каротажа, датчики PWD и DDSr™, которые могут работать при температурах до 200°С, позволяя бурить там, где раньше это было невозможно, или приходилось бурить “вслепую”.
С другой стороны, в России нам также приходится сталкиваться с низкими температурами окружающей среды, что может затруднять инициализацию прибора во время подъема КНБК над роторным столом.
Скважины с высоким (более 2%) содержанием песка также могут представлять сложности для MWD систем.
Phoenix Technology Services Russia: По большому счету нет ограничений связанных со сложностью месторождения. Разумеется, существуют лишь ограничения связанные с техническими возможностями оборудования. Необходимо подбирать телеметрическую систему MWD под тип геологического разреза и сложность решаемой задачи. Если где-то можно использовать телеметрическую систему MWD с электромагнитным каналом связи, то в других случаях единственным решением может быть только телеметрическая система MWD с гидравлическим каналом. В случаях, например, с высокими забойными температурами или агрессивной средой необходимо выбирать забойное оборудование в специальном исполнении.
Weatherford: Компания Weatherford успешно использует собственное оборудование при температурах >190°C при выполнении работ в Северном море, Тайланде и в Мексиканском заливе. Уже закончены работы в нескольких скважинах в Мексиканском заливе, характеризующихся рекордной вертикальной глубиной стволов. При этом наши приборы работали при давлении >28 000 фунт/кв. дюйм. По мнению заказчиков, компания Weatherford является мировым лидером по проведению операций каротажа и измерений в процессе бурения при высоком давлении и/или температурах.
Система роторного бурения РУС представляет собой инструмент бурения в сложных внутрискважинных условиях. Система работает на аккумуляторных батареях и для работы ей не требуется буровой раствор, поэтому она просто идеально подходит для бурения на депрессии или на репрессии, когда требуется низкий расход бурового раствора.
Каким образом организуется передача данных между поверхностным и скважинным приборами и как обеспечивается качество данных?
Baker Hughes: Существует всего четыре способа передачи данных (телеметрия):
» по кабелю (устаревшая технология),
» по электро-магнитному каналу,
» передача данных по столбу промывочной жидкости
» относительно новая технология wired pipe, где предача данных осуществляется по специальным буровым трубам, оснащенным электронными соединениями и проводкой.
Каждый из перечисленных способов имеет свои преимущества и недостатки, а так же области применения. Обеспечение качества передаваемых данных – целая отдельная область. Вкратце, качество данных начинается с качества и точности установленных в системах MWD магнитометрах и акселерометрах, качества электронных плат и компенентов, качества сборки оборудования на заводе, уровня своевременного текущего обслуживания оборудования, включая калибровку и тарирование приборов в специальных “немагнитных” помещениях, установки необходимого количества димагнитных труб в компановку низа буровой колонны. Далее, расчет всех необходимых поправок на географическое положение устья скважины и величины магнитного поля и введение поправочных данных в сопровождающий компьютер. И, в дополнение, непосредственно в процессе бурения, получаемые в реальном времени данные инклинометрии обрабатываются программным обеспечением для подтверждения качества или отбраковки, так же скважинный прибор передает в заданных промежутках времени диагностические данные по своему текущему состоянию и функционированию элементов.
GE Oil&Gas: Для передачи данных на поверхность используется установленный снизу пульсатор, устойчивый к материалам для борьбы с поглощением. Использование гидроимпульсного канала связи для телеметрических систем остается основным отраслевым стандартом для передачи скважинных данных. Компания GE постоянно рассматривает возможности улучшения методов и скорости передачи данных, таких как сжатие данных и электромагнитная телеметрия. GE также использует телеметрию с электромагнитным каналом связи в предлагаемом нами приборе EM-MWD. Все компоненты мощных, эффективных и надежных систем Electro-Trac EM оптимизированы для минимизации простоев и повышенной помехоустойчивости. Телеметрический инструмент Electro-Trac EM использует патентованную технологию Data Fusion, обеспечивающую революционный подход к подземной беспроводной телеметрии.
Halliburton: Halliburton Sperry Drilling использует два метода передачи данных с прибора MWD на устье: электромагнитный и гидроимпульсный. Последний пользуется большей популярностью, поскольку он может использоваться на большей глубине и не подвержен влиянию пластовых условий.
Качество данных, получаемых с MWD приборов постоянно анализируется в реальном времени, а анализ считываемых данных впоследствии контролируется отделом LQC. Приборы калибруются и поверяются до и после каждого рейса, чтобы обеспечить их работу в заданных пределах, а производимые этими приборами данные тщательно проверяются, как в реальном времени, так и после рейсов, чтобы обеспечить их соответствие заданным стандартам. Значения конкретных стандартов зависят от конкретных приборов и публикуются в справочных руководствах, которыми могут воспользоваться полевые инженеры, аналитики каротажных данных и заказчики.
Phoenix Technology Services Russia: Компания Phoenix Technology Services обладает телеметрическими системами MWD с гидравлическим и электромагнитным каналами связи. Российское подразделение в основном использует отлично зарекомендовавшие себя телеметрические системы MWD “Р-360” с гидравлическим каналом (positive pulse), которые мы производим сами в Канаде.
Принцип работы прост. Телеметрические системы с электромагнитным каналом связи используют электрический ток и проводящие свойства породы. Телеметрические системы с гидравлическим каналом связи используют буровой раствор для передачи данных на поверхность, при этом на пульсаторе создается моментальное ограничение подачи бурового раствора, создавая серию пульсаций-скачков давления на поверхности. Эти пульсации улавливаются поверхностной системой датчиков и преобразовываются в полезный сигнал. Данные получаемые с телеметрической системы (каждый полученный замер) проходят автоматическую проверку, которую дополнительно контролирует и перепроверяет инженер по телеметрии. Измерения полученные с гравитометров и магнитометров телеметрической системы сравниваются с фактическими имеющимися локальными данными гравитационного и магнитного поля Земли.
Weatherford: Существует три способа передачи данных: телеметрия с электромагнитным каналом, гидравлический канал с позитивными импульсами и буровые трубы со встроенным интеллектуальным кабелем. Передача данных при помощи электромагнитного канала особенно востребована при бурении на депрессии, а позитивные импульсы – наиболее компромиссный вариант за счет сжимаемости системы циркуляции бурового раствора.
Телеметрия на позитивных импульсах представляет собой высокоскоростную и экономически эффективную систему передачи данных с забоя на поверхность на скорости до 11 бит/с. Приборы каротажа LWD компании Weatherford могут быть совместимы с интеллектуальными трубами компании NOV через канал WIS и гарантировать беспрепятственный поток данных, что позволяет передавать на поверхность большой объем информации. Все это способствует тому, что конечный пользователь получает сохраненные в памяти прибора и высококачественные имиджи плотностного каротажа, кавернометрии, профилеметрии, гамма-каротажа, каротажа сопротивлений и микрокаротажа, а также когерентности в режиме реального времени. И все это в качестве важного дополнения к прочим буровым данным по вибрации, давлениям, температурам, а также мгновенным исследованиям получают просто нажатием кнопки.
Если Россия начнет разработку нетрадиционных Месторождений, как системы MWD помогут в развитии таких месторождений?
Baker Hughes: Лично я предпочитаю термин “трудноизвлекаемые запасы”. Традиционная технология разработки трудноизвлекаемых запасов – стрительство горизонтальных скважин с последующим гидроразрывом. Естественно, системы MWD в сочетании с системами каротажа в процессе бурения LWD будут одним из ключевых элементов разработки таких месторождений.
GE Oil&Gas: Телеметрический инструмент Electro-Trac EM может оказаться очень полезным в разработке нетрадиционных месторождений региона. Благодаря отсутствию движущихся деталей и высокой устойчивости к экранирующему наполнителю, надежность оборудования значительно выше. Эксплуатационная эффективность может быть улучшена за счет передачи автономных измерений менее чем за 30 секунд, а диапазон эксплуатации расширен за счет возможности измерения сигналов слабее чем 1 µV на большой глубине. Инструмент Electro-Trac может быть использован в скважинах различного размера, от 4 до 9 ½ дюймов.
Halliburton: Основная сложность при работе с нетрадиционными сланцевыми коллекторами – определение содержание органического углерода и механических свойств пород. Породы с высоким содержанием ОУ с большей вероятностью окажутся продуктивными, в то время как хрупкие породы с большей легкостью поддаются разрыву на этапе заканчивания. Обычно богатые углеродом зоны определяются по результатам приборов гамма-каротажа или приборов спектрального гамма-каротажа, и иногда – по результатам измерений сопротивления. Все эти измерения доступны на платформах MLWD, что позволяет осуществлять геонавигацию ствола скважины как на основе фильтрационно-емкостных, так и механических свойств окружающих пород.
Phoenix Technology Services Russia: Вне всякого сомнения, когда в России начнется разработка нетрадиционных залежей углеводородов, таких как сланцевый газ/нефть, телеметрические системы MWD будут неотъемлемой частью этого процесса. Сама технология разработки подобных залежей подразумевает массовое бурение горизонтальных скважин, что физически не возможно без применения телеметрических систем MWD. К слову сказать, сегодня Phoenix Technology Services является активнейшим участником такого массового бурения при разработке сланцевого газа и нефти в Северной Америке.
Weatherford: Локации подразделения по наклонно-направленному бурению компании Weatherford очень удачно расположены географически, поэтому мы можем предоставить операторам оптимальные технологические разработки для бурения и последующей добычи нефти и газа.
При использовании спектрального азимутального гамма-датчика SpectralWaveTM можно получить в режиме реального времени имидж ствола скважины по 16 секторам вместе с кривыми данных по калию, урану и торию (K, U и Th). Результаты по урану можно напрямую увязать с общим содержанием органического углерода (TOC) в породе, что облегчит процесс осуществления геонавигации в таких пластах. Датчик CrossWaveTM также позволяет получить не только имидж по 16 секторам, но и показатели анизотропии поперечных волн.
Какими конкретными преимуществами для заказчика обладают ваши системы по сравнению с другими MWD системами на рынке? Расскажите нам о примерах успешного использования систем в регионе?
Baker Hughes: Данный вопрос открывает огромные возможности для открытой рекламы и маркетинга оборудования и услуг Baker Hughes, что не совсем соответствует формату данной статьи, более того, не совсем этично, с моей точки зрения. Поэтому я постараюсь не использовать данную возможность и не упоминать торговые марки оборудования, скважины, месторождения и заказчиков.
Надеюсь, что рост бизнеса компании Baker Hughes в сегменте телеметрии и каротажа в процессе бурения в регионе, опережающий темпы роста рынка, говорит сам за себя. Следует отметить, что научно-исследовательские центры и сборочные предприятия компании находятся в Европе и США, обеспечивая качество сборки в соответствии с самыми высокими стандартами. Сервисные центры в регионе оснащены наиболее современным оборудованием, технический, полевой и инженерный персонал проходит обязательное индивидуальное обучение, аттестации и курсы повышения квалификации как на территории России, так и зарубежом. Соответсвие всех технических, технологических и бизнес процессов процедурам и политикам компании обеспечивается внедрением и использованием глобальной системы BHOS (Baker Hughes Operating System). Репутация компании, как одного из лидеров отрасли, позволила нам участвовать в строительстве наиболее сложных скважин на территории региона – многоствольных, рекордных сверхглубоких, скважин с горизонтальными окончаниями, проводкой горизонтальных участков в коридоре около одного метра, бурение высокотемпературных скважин и скважин с повышенными давлениями.
GE Oil&Gas: Компания GE много лет осуществляла поддержку телеметрических инструментов Geolink, а после прекращения выпуска этой продуктовой линейки, недавно GE заключила несколько договоров на поставку на российский рынок извлекаемых систем КВБ Tensor Centerfire.
Мы думаем, что использование телеметрической системы GE Tensor в России будет расти, поскольку такая система остается предпочтительной для многих операторов, разрабатывающих нетрадиционные запасы в Северной Америке, и, по мере роста разработки нетрадиционных месторождений в России, будет расти спрос на экономически эффективные, легкие в обслуживании надежные телеметрические инструменты, такие как телеметрические системы Tensor.
Успех системы Electro-Trac EM в Северной Америке, где увеличенный до конечной глубины свыше 4000м рабочий диапазон позволил операторам улучшить эффективность бурения, сократить простои и время измерений, гарантирует преимущества использования технологии электромагнитной телеметрии на глубоких месторождениях России.
Halliburton: Halliburton располагает опытом сопровождения горизонтальных скважин в сложных геологических условиях, проводя оценку коллекторских свойств в скважинах при высоких показаниях давления и температур. Наши услуги по MWD и LWD совместно с командами Оптимизации бурения (ADT) и Геонавигации (Geosteering), помогают нашим заказчикам в изучении и максимально эффективном использовании коллектора.
Phoenix Technology Services Russia: Высоконадежные и точные телесистемы Phoenix Technology Services обеспечивают высококлассную проводку профилей скважин любой сложности, что позволяет нам предоставлять заказчикам сервис по телеметрическому и инженерному сопровождению бурения лучшего мирового уровня.
Если же говорить о «историях успеха», то я считаю, что в данном случае лучше всего о Phoenix Technology Services говорят результаты работы. Являясь изначально канадской компанией, первую скважину в России Phoenix Technology Services пробурила в декабре 2011 года, и с тех пор счет пробуренных с нашим участием скважин на российской земле перевалил за три сотни. За этот достаточно короткий промежуток времени, менее чем за два года, российское подразделение компании Phoenix Technology Services сумело заработать признание и доверие среди заказчиков. В отличие от многих компаний, мы специализируемся только на телеметрическом и инженерном сопровождении наклонно-направленного бурения. Являясь безусловным лидером по ННБ в Канаде и одним из лидеров в США, Phoenix Technology Services в России также приобрела репутацию надежного партнера, предоставляющего высококлассный сервис, который способен успешно конкурировать с ведущими мировыми нефтесервисными компаниями.
Weatherford: Высоконадежные и точные телесистемы Phoenix Technology Services обеспечивают высококлассную проводку профилей скважин любой сложности, что позволяет нам предоставлять заказчикам сервис по телеметрическому и инженерному сопровождению бурения лучшего мирового уровня. Если же говорить о «историях успеха», то я считаю, что в данном случае лучше всего о Phoenix Technology Services говорят результаты работы. Являясь изначально канадской компанией, первую скважину в России Phoenix Technology Services пробурила в декабре 2011 года, и с тех пор счет пробуренных с нашим участием скважин на российской земле перевалил за три сотни. За этот достаточно короткий промежуток времени, менее чем за два года, российское подразделение компании Phoenix Technology Services сумело заработать признание и доверие среди заказчиков. В отличие от многих компаний, мы специализируемся только на телеметрическом и инженерном сопровождении наклонно-направленного бурения. Являясь безусловным лидером по ННБ в Канаде и одним из лидеров в США, Phoenix Technology Services в России также приобрела репутацию надежного партнера, предоставляющего высококлассный сервис, который способен успешно конкурировать с ведущими мировыми нефтесервисными компаниями.
Виталий Чубриков
Baker Hughes
Виталий Чубриков закончил Губкинский университет нефти и газа в Москве в 1995 году и был принят на работу в компанию «Baker Hughes» вскоре после этого в качестве промыслового инженера. На протяжении этих лет он занимал различные должности на промыслах и в административных структурах, как в отечественных, так и в международных проектах.
Роман Доронин
Halliburton
Роман Доронин окончил Российский Государственный Университет Нефти и Газа им. Губкина в Москве, по специализации “инженер-нефтяник”, после чего продолжил свое образование в том же университете, недавно защитив степень кандидата геолого-минералогических наук. Свою профессиональную карьеру Роман начал в 2007 году как инженер-каротажник, после чего он работал инженером по сейсморазведочным работам. Затем, в 2010 году, Роман перешел на работу с MWD и LWD в Halliburton Sperry, где вскоре стал ведущим инженером по MWD/LWD. После дополнительного обучения в области петрофизики, он был переведен специалистом по геонавигации в подразделение Formation Reservior Solutions, где занимался работой по различным российским проектам, включая такие, как Лукойл Усинск и ТНК Нягань.
Станислав Тер-Сааков
Halliburton
Станислав Тер-Сааков работает в отделе Геонавигации Halliburton в России с 2011 года. Ранее он был инженером-каротажником и работал с приборами плотностного, нейтронного и каротажа сопротивлений. Станислав пришел в Halliburton в 2008 году, окончив Тюменский Государственный Нефтегазовый Университет.
Очир Джамбинов
Phoenix Technology Services Russia
Очир Владимирович Джамбинов — директор по развитию бизнеса компании Phoenix Technology Services Россия. Он с отличием окончил геологический ф-т МГУ им. М.В.Ломоносова, по специальности геолог-нефтяник в 2002 г. В 2005 г., после работы в ОАО «ЮКОС» старшим специалистом Центра Анализа и Прогнозирования в Москве он пришел полевым инженером подразделения бурения и измерений в компанию Schlumberger, где он работал на проектах в Западной Сибири и в Катаре. В 2008 он стал стипендиатом Chevening, высоко конкурентоспособной и престижной премии Российского отделения Британского Совета Министерства иностранных дел и дел содружества СК, с полной оплатой обучения и проживания в Соединенном Королевстве. В 2009 г. господин Джамбинов получил степень MA в управлении от бизнес-школы университета Дархам, СК. В 2009-2013 гг Очир Владимирович работал менеджером по продажам и развитию бизнеса подразделения бурения и измерений компании Schlumberger в России, после чего занял свою нынешнюю должность в компании Phoenix Technology Services, Россия.
Рик Бартон
Weatherford Россия
Рик Бартон работает в департаменте Наклонно-направленное бурение компании Weatherford региональным менеджером по проведению каротажа/измерений в процессе бурения (LWD/MWD). Он осуществляет операционный контроль при выполнении каротажа в процессе бурения и проведения измерений, а также отвечает за техническое развитие этого сегмента в России. Ранее Рик работал руководителем отдела технических продаж, а до этого был координатором каротажных работ при бурении, выполняемых в Великобритании и по всей Европе.






