что такое абсолютное давление воздуха
Любое вещество может быть описано своими физико-химическим параметрами. В отличие от жидких и твердых веществ, чье состояние может быть охарактеризовано температурой и плотностью, газы имеют еще один показатель, который называется «давление». Эта физическая величина для газообразного вещества может быть представлена итоговым значением сил ударов молекул о стенки сосуда, содержащего газ. Чем больше молекул ударяется о стенки, чем больше их масса, скорость и сила воздействия на стенки сосуда– тем выше показатель давления.
Классификация
Физики различают атмосферное, абсолютное и избыточное давление. Эти виды величин связаны между собой посредством физических формул.
Единицы измерения давления
Существует множество традиционных единиц давления, которые сложились в результате развития физических дисциплин. Наиболее распространенными их них являются «бар», «атмосфера», «мм ртутного столба» и другие производные от них величины. В физических процессах этот параметр обозначается литерой Р, измеряется в паскалях и производных от него единицах. В письменном виде паскаль отображается так: [Па].
Понятие атмосферного давления
Окружающий нас воздух состоит из постоянно движущихся молекул, которые сталкиваются с земной поверхностью,находящимися на ней предметами и между собой. Из ударов крохотных частиц складывается итоговое давление. Данный параметр называется атмосферными, или барометрическим давлением.
Но, как показали измерения, Ратм в значительной степени зависит от температуры окружающей среды и высоты над уровнем моря. Поэтому для объяснения физических процессов и решения задач текущие параметры атмосферного давления сводят к нормальным условиям. Начальные параметры Ратм определяются при показателе температуры 0⁰ С над нулевым уровнем моря.
Что такое абсолютное давление
Стандартные способы измерения давления обычно используют атмосферное давление в качестве точки отсчета. Обычно этот параметр измеряется различными приборами. Наиболее популярными из которых являются барометры.
В других случаях применяют отношение наблюдаемого давления к вакууму или к другой выбранной отметке. Чтобы обозначить выбранные категории, применяют такие определения:
Дифференциальное, абсолютное и избыточное давление визуально может быть представлено так:
Избыточное и абсолютное давление логически связаны между собой. Значение абсолютного давления можно получить, измерив наблюдаемое давление и прибавив к нему величину атмосферного Р.
В случае избыточного давления точкой отсчета служит значение атмосферного P. Таким образом, эта величина может быть представлена как разность между абсолютным давлением и атмосферным. Абсолютное и избыточное давление не может быть отрицательным. При Рабс=0 давление становится равным атмосферному показателю этой величины. Если быть точным, то Рабс не может быть равно вакууму – всегда остается какая-то величина, сформированная, например, давлением насыщенных паров в жидкости. Но в случае тяжелых жидкостей этот параметр очень незначителен, поэтому в первоначальных расчетах, не требующих точного вычисления, вполне допустимо.
Что такое абсолютное давление воздуха
Абсолютное давление воздуха можно измерить лишь в сосудах с другими веществами – с жидкостями или газами. Так, данный параметр довольно часто измеряется в закрытых сосудах с жидкостями. Как и в первом случае, абсолютное давление воздуха в закрытом сосуде можно измерить,как разницу между наблюдаемым Р и атмосферным.
Пьезометрическая высота
Если к давлению, наблюдаемому в сосуде, применить законы гидростатики, можно получить такое выражение для абсолютного давления:
Здесь ра – атмосферное давление, а выражение gρhp представляет собой произведение высоты столба жидкости на ее плотность и на значение силы тяжести. Так можно измерить абсолютное значение газа в любом сосуде.
Часто задаваемые вопросы о давлении и важности абсолютного давления
Ответы на вопросы об основах измерения давления, в том числе, почему измерение манометрического давления является прекрасным для большинства применений, но в некоторых случаях требуется измерение абсолютного давления.
Что такое давление?
Давление обычно определяется как сила, которая действует равномерно по определенной области. Например, когда вы нажимаете кнопку на дверном звонке, давление вашего пальца прикладывает физическую силу, которая приводит в действие электрический выключатель в дверном звонке, который затем посылает сигнал на динамик. В промышленных применениях сила, которая воздействует на область, обычно представляет собой газ или жидкость, но она также может быть твердой.
Почему мы измеряем давление?
Мониторинг давления является неотъемлемой частью современного общества. По всему миру бесчисленные датчики давления постоянно обеспечивают показания давления на нефтеперерабатывающих заводах, производственных объектах, домах и транспортных средствах. Это делается для обеспечения того, чтобы давление находилось в допустимых пределах и, если нет, чтобы предупредить операторов об исправлении ситуации.
Что такое абсолютное давление, и как это соотносится с избыточным давлением?
Чтобы понять абсолютное давление, нужно сначала определить несколько терминов:
Важным отличием последних двух типов давления является нулевая ссылка. Ноль инструментов, измеряющих избыточное давление, представляет собой атмосферный воздух, который изменяется в зависимости от высоты и погодных условий. Ноль в приборах, измеряющих абсолютное давление, — это полное отсутствие давления или вакуум; поэтому этот ноль не меняется.
Каковы преимущества измерения абсолютного давления и избыточного давления?
Поскольку все объекты и процессы на заводе-изготовителе имеют одинаковую высоту и атмосферное давление, измерение избыточного давления является достаточно точным для большинства ситуаций. Тем не менее, измерения абсолютного давления требуются в специализированных ситуациях, например, когда вам требуется измерение давления, независимо от колебаний атмосферного давления, а также на промышленных предприятиях, где используются вакуумные насосы и машины вакуумной упаковки.
Абсолютные манометры и датчики присутствуют в многочисленных применениях, включая высотомеры для авиации, мониторы для давления жидкого пара, процессы перегонки, HVAC и производство полупроводников. Давление опасных арсиновых и фосфиновых газов, используемых в процессе производства полупроводников, должно тщательно контролироваться во время хранения и транспортировки. Поскольку атмосферные условия колеблются, важно следить за тем, чтобы опасные газы использовали контрольную точку, которая не изменяется.
Как работают абсолютные манометры?
Абсолютные манометры включают внутреннюю вакуумную камеру, которая используется в качестве эталона для проведения измерений давления. Манометрические датчики абсолютного давления на основе диафрагмы имеют прочную, но гибкую панель, которая разделяет камеру и вакуумную камеру. Локальное атмосферное давление заставляет диафрагму деформироваться в вакуумную камеру. Величина деформации преобразуется в значение давления. Это значение затем указывается на табло индикатора.
Узнайте больше о давлении и различных приложениях для измерения давления, обратившись к нашим консультантам по телефону +7 (831) 218-05-61.
Диагностика давления во впускном коллекторе
Итак наверное напишу про самый легкий способ диагностики, если нет ничего под рукой, конечно точность такого измерения не может быть большой, но диагностировать состояние мотора можно, развиваться в путях диагностики и кодирования всегда нужно есть что то новое чего не знаешь, итак приступим, нудятины много…
Введем базовые понятия, так как я вывел их для себя:
Атмосферное давление (барометрическое давление обычно 760 мм ртутного столбя при 0 ℃ равно 100 кРа (100 кило Паскалей), 1000 Hpa (1000 гекто Паскалей) или 1 Бар. (всегда приходиться переводить могут быть и другие единицы измерения), но учтите что давление является переменным с высотой и погодой.
Абсолютное давление — это давление ниже атмосферного, в вакууме равно нулю. Для абсолютного давления нолем является отметка при переходе вакуума в давление, таким образом, его значение можно получить – измерив, давление плюс атмосферное давление.
Абсолютное давление на планете земля, это суммарное давление, воздействующее на вещество, или другими словами это сумма атмосферного (барометрического) и избыточного давлений.
-приборное или избыточное («действующее», «манометрическое») давление измеряется относительно атмосферного, или:
-ноль приборного (избыточного) давления равен атмосферному давлению, или
абсолютный вакуум равен «минус одной атмосфере» приборного (избыточного, манометрического) давления и, при этом, равен нулю абсолютного давления.
wikipedia
Абсолю́тное давле́ние ─ это истинное давление сплошных масс (жидкостей, паров и газов), отсчитываемое от абсолютного нуля давления ─ абсолютного вакуума. Абсолютный нуль давления макроскопических объёмов вещества практически недостижим, так как любое твёрдое тело образует пары, да и космическое пространство также не представляет собой абсолютную пустоту, лишённую вещества, поскольку содержит водород в количестве нескольких молекул на кубический сантиметр.
Различают также избыточное или манометрическое (приборное) давление и давление окружающей среды (в земных условиях ─ атмосферное давление. Избыточное давление представляет собой разность абсолютного давления и давления окружающей среды. Эта разность может быть как положительной, так и отрицательной. В последнем случае её называют разрежением или вакуумом, а избыточное давление – остаточным. Измерение абсолютного давления в земных условиях связано с определёнными трудностями.
Проще говоря наш датчик машины покажет 200 kPa если датчик замеряет относительно вакуума в машине, а прибор по отношению к барометрическому давлению 100 kPa или проще говоря 1 bar… абсолютное давление.
Также в моторе с наддувом давление может называться избыточным, превышающим атмосферное более 100 kpa, для избыточного давления нолем является давление атмосферного воздуха, это давление представляет собой разность абсолютного давления и давления окружающей среды таким образом, его значение равно абсолютному давлению минус атмосферное давление. Отрицательные знаки обычно опускаются. Тоесть 140-100 = 40 избыточное давление, обычно как сказано выше идет с плюсом +40 kPa. Эта разность может быть как положительной, так и отрицательной (вакуум либо избыточное). Как уже было сказано выше…
При измерении давления можно в качестве начала отсчета брать давление, равное 0. Тогда измерянное давление называют абсолютным. Если же давление измеряется относительно атмосферного, то такое давление называют избыточным.
Чтобы не иметь дело с отрицательными величинами, величина вакуумметрического давления определяется как разность атмосферного и абсолютного давления
Разряжение это разница между атмосферным давлением и фактическим давлением во впускном коллекторе. Например 100 kpa — 30 kpa = 70 kpa разряжение во впускном коллекторе… Еще раз если абсолютное 40 то разряжение 60, это разница между атмосферным, всегда отнимаем от 100 kpa.
Давление или есть, или его нет (абсолютный вакуум), минусового давления не существует! Минус сделан чтобы мы понимали относительно чего измерение в диагностической программе! Этажи в доме с минусами не считаем))
Также стоит почитать комментарии тут тыц
Данный метод не лучший но позволяет узнать многое, дополняйте конечно многое зависит от клапанов, коллектора, фаз, но не повредит при покупке когда не хочется мерить компрессию))
Еще рекомендую ознакомиться
Выпуск отработавших газов из цилиндра четырёхтактного двигателя осуществляется через канал, открывающийся при помощи выпускного клапана и соединяющий таким образом внутренний объём цилиндра с выпускным коллектором двигателя. Перетекание отработавших газов из цилиндра в выпускной коллектор происходит за счёт «выталкивания» газов из цилиндра поршнем, который во время такта выпуска движется по направлению к головке блока цилиндров.
Поступление новой порции топливовоздушной смеси в цилиндр четырёхтактного двигателя осуществляется через канал, открывающийся при помощи впускного клапана и соединяющий таким образом внутренний объём впускного коллектора двигателя с внутренним объёмом цилиндра. Перетекание топливовоздушной смеси из впускного коллектора в цилиндр происходит за счёт «засасывания» газов из впускного коллектора поршнем, который во время такта впуска движется по направлению от головки блока цилиндров и создаёт в цилиндре разрежение.
Для многих двигателей, фаза впуска топливовоздушной смеси начинается ещё до того, как закончится фаза выпуска отработавших газов. То есть, кратковременно, оба клапана одного и того же цилиндра – и выпускной и впускной – находятся в приоткрытом состоянии. Временной промежуток между моментом открытия впускного клапана и моментом закрытия выпускного клапана называется фазой перекрытия клапанов. Начало и конец фазы перекрытия клапанов находят своё отражение на графике пульсаций разрежения во впускном коллекторе в виде характерных точек и участков графика. Предлагаемая методика основана на их обнаружении и измерении их взаимного положения.
Итак сложная версия такой диагностики при помощи осцилографа (источник injectorservice.com.ua:
Методика оценки состояния клапанного механизма двигателя по пульсациям разрежения во впускном коллекторе работающего двигателя предполагает, что впускной клапан диагностируемого двигателя открывается раньше, чем закрывается выпускной клапан. Так же предполагается, что диагностируемый двигатель не оснащён турбонаддувом / компрессором.
Описание формы и характерных точек графика пульсаций разрежения во впускном коллекторе работающего двигателя.
За счёт того, что начало и конец фазы перекрытия клапанов всех цилиндров двигателя определённым образом отражаются на графике пульсаций разрежения во впускном коллекторе, по характерным точкам этого графика можно обнаружить моменты начала открытия впускных клапанов и моменты закрытия выпускных клапанов. Начало фазы перекрытия клапанов и её окончание отражается так же и на графике давления в цилиндре – но только для того цилиндра, график давления в котором исследуется при помощи датчика Px.
Графики пульсаций разрежения во впускном коллекторе работающего двигателя (показан зелёным цветом) и давления в одном из цилиндров (показан синим цветом).
1 – Момент открытия впускного клапана цилиндра, график давления в котором показан синим цветом.
2 – Момент закрытия выпускного клапана цилиндра, график давления в котором показан синим цветом.
3 – Такт выпуска отработавших газов из цилиндра, график давления в котором показан синим цветом.
4 – Такт впуска свежей порции топливовоздушной смеси в цилиндр, график давления в котором показан синим цветом.
360° – Точка ВМТ 360° цилиндра, график давления в котором показан синим цветом.
Участок между началом фазы перекрытия клапанов и точкой ВМТ 360°.
Как видно по графику давления в цилиндре (график синего цвета), за счёт возникшего оттока газов из цилиндра во впускной коллектор, давление внутри цилиндра начинает несколько снижаться. Но величина этого снижения давления внутри цилиндра с момента начала фазы перекрытия клапанов и до точки ВМТ 360° незначительна по следующим причинам:
-поршень по-прежнему движется по направлению к головке блока цилиндров, уменьшая за счёт этого величину внутреннего объёма цилиндра; это уменьшение величины внутреннего объёма цилиндра несколько компенсирует падение давления газов внутри цилиндра, возникающее из-за утечки газов во впускной коллектор;
-выпускной клапан всё ещё открыт, и внутренний объём цилиндра за счёт этого продолжает сообщаться с выпускным коллектором, где давление близко к атмосферному; поэтому, падение давления газов внутри цилиндра, из-за их утечки во впускной коллектор, компенсируется за счёт «подсоса» газов в цилиндр из выпускного коллектора.
Вследствие «подсоса» газов из цилиндра во впускной коллектор, давление газов внутри впускного коллектора непрерывно возрастает (разрежение падает).
Как видно из приведённой иллюстрации, положение точек пересечения передних фронтов графика пульсаций разрежения во впускном коллекторе (график зелёного цвета) с нулевой линией графика (с линией, отмечающей уровень смещения сигнала по постоянному напряжению) по времени может совпадать или приближаться к моменту, когда поршень цилиндра, график давления в котором показан на иллюстрации синим цветом, находится в положении ВМТ 360° (конец такта выпуска и начало такта впуска). Это позволяет принимать точки пересечения переднего фронта графика пульсаций разрежения во впускном коллекторе с нулевой линией графика за моменты, когда поршни двигателя находятся в положении ВМТ 360°. Положение этих точек на графике с приемлемой точностью совпадает с моментами, когда поршни двигателя находятся в положении ВМТ 360°.
Участок между точкой ВМТ 360° и концом фазы перекрытия клапанов
Заметное снижение давления внутри цилиндра (нарастание разрежения) начинается с точки ВМТ 360° и продолжается до конца фазы перекрытия клапанов. Это происходит по следующим причинам:
выпускной клапан закрывается, и величина притока газов из выпускного коллектора в цилиндр из-за этого всё более ограничивается;
поршень изменил своё направление движения на противоположное – теперь он движется по направлению от головки блока цилиндров и величина внутреннего объёма цилиндра увеличивается; из-за этого увеличения величины внутреннего объёма цилиндра газы внутри цилиндра разрежаются (давление газов внутри цилиндра уменьшается);
впускной клапан продолжает открываться, сообщение внутреннего объёма цилиндра с внутренним объёмом впускного коллектора улучшается; а так как газы во впускном коллекторе значительно более разрежены нежели в цилиндре, процесс перетекания газов из цилиндра во впускной коллектор продолжается. Процесс перетекания газов из выпускного коллектора в цилиндр, а из цилиндра во впускной коллектор продолжается вплоть до самого конца фазы перекрытия клапанов (до момента полного закрытия выпускного клапана).
Из-за постоянного притока газов из выпускного коллектора в цилиндр а оттуда во впускной коллектор, давление внутри впускного коллектора продолжает повышаться (разрежение продолжает уменьшаться). Уменьшение разрежения во впускном коллекторе продолжается до момента полного закрытия выпускного клапана.
Конец фазы перекрытия клапанов
Только начиная с момента закрытия выпускного клапана, процесс «подсоса» газов во впускной коллектор из выпускного коллектора через приоткрытый выпускной клапан => внутренний объём цилиндра => приоткрытый впускной клапан прекращается.
Поршень при этом продолжает двигаться по направлению от головки блока цилиндров, увеличивая таким образом величину внутреннего объёма цилиндра. Увеличение внутреннего объёма цилиндра приводит к некоторому падению давления внутри цилиндра, которое компенсируется за счёт «засасывания» газов в цилиндр из впускного коллектора.
Таким образом, в момент закрытия выпускного клапана (в конце фазы перекрытия клапанов) приток газов во впускной коллектор из цилиндра прекращается и начинается отток газов из впускного коллектора в цилиндр. За счёт возникновения оттока газов из впускного коллектора в цилиндр, давление внутри впускного коллектора начинает уменьшаться (разрежение внутри впускного коллектора начинает нарастать). Момент начала увеличения разрежения во впускном коллекторе (график зелёного цвета) отмечен на иллюстрации маркером «2».
Примечание.
Следует отметить то, что высота подъёма клапанов во время фазы перекрытия клапанов незначительна – выпускной клапан уже почти закрыт, а впускной клапан только начал открываться. Соответственно, количество газов, перетекающих во время фазы перекрытия клапанов из выпускного коллектора во впускной коллектор, незначительно.
Что такое абсолютное давление воздуха
Чтобы лучше разобраться в сути понятия, необходимо напомнить, что все газообразные тела имеют тенденцию расширяться. Следующий эксперимент демонстрирует такое свойство, как влияние атмосферного давления на количество воздуха, находящегося в сосуде.
Рисунок 1 в общем изображении.
Закрытие крана не будет изменять внутреннее давление, которое будет таким же, как и внешнее давление. Количество молекул воздуха внутри воздушного шара останется постоянным.
Воздушный шар помещен внутри прозрачного колокола, к которому присоединен вакуумный насос. В этом пространстве воздушный шар окружен воздухом при атмосферном давлении.
При подаче в колокол вакуума, воздух удаляется.
Можно наблюдать, что воздушный шар увеличивается в объеме.
Почему это происходит?
I. Потому что воздух (и все газы) обладает свойством расширения.
II. Потому что воздух из колокола был удален, это уменьшило силу давления на воздушный шар и сопротивление расширению воздухом шара снизилось.
Эта свойство расширения можно продемонстрировать, используя только атмосферный воздух и воздушный шар. Закрывая воздушный шар на уровне моря (нулевая высота), в нем установиться давление 1 бар. При перемещении воздушного шара вверх на гору, увеличивая высоту, таким образом, и уменьшая окружающее атмосферное давление, будет происходить расширение воздушного шара. Это явление происходит несмотря на то, что воздушный шар остается закрытым.
Как это объяснить?
Как было отмечено выше, атмосферное давление уменьшается по мере увеличения высоты над уровнем моря. Увеличение воздушного шара происходит из-за расширения воздуха внутри него (атмосферное давление), чему противодействует внешний воздух, давление которого ниже. При открытии крана, некоторое количество воздушных молекул будет перемещаться из воздушного шара в открытое пространство до тех пор, пока внутреннее давление не будет сбалансировано внешним давлением. Воздушный шар будет выглядеть не полностью раздутым (в вялом состоянии). Если кран закрыть и воздушный шар возвратить на уровень моря, то баллон будет находиться в «более вялом» состоянии, чем тогда, когда он был на горе. Это происходит потому, что внешнее давление (на уровне моря) больше, чем внутреннее давление (поскольку кран был закрыт на высоте выше уровня моря, то установилось более низкое давление) и оно будет действовать до разрушения оболочки воздушного шара.
Можно сделать следующие заключения:
a) Давление воздуха, содержащегося в резервуаре, может быть уменьшено до нулевого значения только в случае, если воздух из сосуда откачать, используя вакуумный насос.
b) Давление воздуха в сосуде, соединенным с атмосферой, будет равным давлению воздуха вне резервуара.
c) Резервуар, содержащий воздух с повышенным давлением, стравит в атмосферу только часть такого давления.
а) Внешнее давление – это давление атмосферы в 1 бар (рис.2). Воздух в резервуаре незначительного объема, относительно объема окружающего пространства, имеет более высокое давление. Когда резервуар соединен с атмосферой, то часть сжатого воздуха будет стравлена из резервуара. При этом достигается баланс между внутренним давлением резервуара и атмосферой.
Рисунок 4 в общем изображении.
Если прибор измерения давления (манометр) соединить с сосудом, где давление 5 бар, то он зафиксирует на различных высотах следующие значения давления:
Атмосферное давление Давление внутри сосуда Показания манометра
На уровне моря Р=1,0 бар 5 бар 5-1,0=4,0 бар
На 1000 м Р=0,9 бар 5 бар 5-0,9=4,1 бар
На 5000 м Р=0,5 бар 5 бар 5-0,5=4,5 бар
Заключение:
Давление воздуха, существующее внутри любого закрытого сосуда, называется «абсолютным давлением». Давление воздуха расположенного вне сосуда называют «относительным давлением» (или «давлением прибора измерения давления», то есть показанное манометром). Поэтому относительное давление равно разнице между «абсолютным давлением» и «атмосферным давлением» вне сосуда.
Принцип действия манометра.
Манометр использует упругое отклонение металлической трубки с профилем эллипса для изменения положения стрелки на шкале. Рисунок 4 показывает манометр «в покое», то есть когда разница давлений на внутренние и внешние поверхности трубки нулевое. Конец трубки «B» открыт для источника давления, тогда как конец «А» закрыт и присоединен к механизму рычага. Этот механизм преобразует отклонение «А» во вращательное движение, изменяя положение стрелки на шкале. На рисунке 5, манометр соединен с воздухом под давлением. Конец «А» будет прогибаться из-за различия давлений, внутреннего и внешнего, это различие можно увидеть на шкале манометра.