зачем пируват превращается в лактат

Метаболиты кишечных бактерий лактат и пируват имеют большое влияние на иммунитет

Небольшие метаболиты нормальных кишечных бактерий имеют большое влияние на кишечный иммунный ответ

зачем пируват превращается в лактат. laktat i piruvat bakterialnyye metabolity. зачем пируват превращается в лактат фото. зачем пируват превращается в лактат-laktat i piruvat bakterialnyye metabolity. картинка зачем пируват превращается в лактат. картинка laktat i piruvat bakterialnyye metabolity.

Бактериальные метаболиты пируват и лактат оказывают большое влияние на иммунитет стимулируя кишечные макрофаги

В течение по крайней мере десятилетия исследователи знали, что нормальные бактерии в кишечнике могут стимулировать кишечные иммунные клетки, чтобы те расширяли щупальцеобразные структуры, известные как дендриты, для “захвата” антигенов, вызывая как немедленные, так и долгосрочные иммунные реакции. Что было менее ясно, так это то, как бактерии активируют этот процесс. Теперь исследовательская группа во главе с японским Университетом Осаки (Osaka University) обнаружила, что молекулы, ответственные за это, скрываются на виду…

Дендритная протрузия клеток кишечника бактериальными метаболитами

зачем пируват превращается в лактат. laktat molochnaya kislota i piruvat pirovinogradnaya kislotta. зачем пируват превращается в лактат фото. зачем пируват превращается в лактат-laktat molochnaya kislota i piruvat pirovinogradnaya kislotta. картинка зачем пируват превращается в лактат. картинка laktat molochnaya kislota i piruvat pirovinogradnaya kislotta.

Затем, исследователи определили GPR31, протеин находящийся на поверхности небольших кишечных макрофагов, как специфическое приемное устройство для 2 метаболитов. У мышей без GPR31 после введения пирувата или лактата наблюдалось снижение дендритной протрузии клетками CX3CR1 + и, как следствие, снижение продукции антител после инфицирования непатогенным штаммом сальмонеллы. Однако самое важное открытие было еще впереди.

Корреспондирующий автор Киоси Такэда (Kiyoshi Takeda) объясняет, что исследование имеет несколько клинических применений. “Поскольку эти метаболиты усиливают иммунный ответ, их можно использовать для повышения эффективности пероральных вакцин, в то время как белок GPR31 является перспективной мишенью для терапии, направленной на устранение кишечных патогенов. Из-за этого мы ожидаем, что молочная кислота, пировиноградная кислота и GPR31 будут изучены в ближайшем будущем в качестве новых мишеней для активации иммунитета.”

зачем пируват превращается в лактат. rol bakterialnykh metabolitov laktata i piruvata v kishechnom immunnom otvete. зачем пируват превращается в лактат фото. зачем пируват превращается в лактат-rol bakterialnykh metabolitov laktata i piruvata v kishechnom immunnom otvete. картинка зачем пируват превращается в лактат. картинка rol bakterialnykh metabolitov laktata i piruvata v kishechnom immunnom otvete.

Рисунок 1: Роль бактериальных метаболитов, лактата и пирувата в кишечном иммунном ответе.

Кишечная микробиота, такая как лактобациллы, производит лактат и пируват. Эти метаболиты стимулируют кишечные макрофаги через рецептор GPR31, позволяя макрофагам делать выступающими трансэпителиальные дендриты и эффективно поглощать патогенные бактерии в кишечнике. Соответственно, лактат и пируват вызывают усиленные иммунные реакции на патогенные бактерии и повышенную устойчивость к инфекции.

зачем пируват превращается в лактат. dendritnyye protruzii kishechnykh makrofagov laktatom i piruvatom. зачем пируват превращается в лактат фото. зачем пируват превращается в лактат-dendritnyye protruzii kishechnykh makrofagov laktatom i piruvatom. картинка зачем пируват превращается в лактат. картинка dendritnyye protruzii kishechnykh makrofagov laktatom i piruvatom.

Рисунок 2: Дендритные протрузии кишечных макрофагов лактатом и пируватом.

Мышам перорально вводили лактат или пируват в течение трех недель. Показаны 3D изображения мелких кишечных ворсинок. Макрофаги помечены зеленым цветом, а их трансэпителиальной дендриты обозначены стрелками. Введение лактата или пирувата резко увеличило количество дендритов макрофагов у мышей дикого типа, но не у мышей с дефицитом GPR31.

Источник:

Статья «GPR31-зависимая дендритная протрузия клеток кишечника CX3CR1 + бактериальными метаболитами” опубликована в Nature: GPR31-dependent dendrite protrusion of intestinal CX3CR1+ cells by bacterial metabolites

Источник

Клиническое значение уровня лактата крови в лабораторной экспресс-диагностике

Торшин В. А., к. м. н., доцент кафедры биохимии РМАПО, Москва

Метаболизм лактата

С момента описания в 1927 году J. Meakins и C. Long связи между повышением уровня лактата в крови и наличием признаков тканевой гипоксии у пациентов с циркуляторным шоком, уровень лактата оценивается как маркер тканевой гипоксии у этой группы больных. С другой стороны, лактат является нормальным конечным продуктом гликолиза в соответствии с реакцией:

Pyruvate + NADH + H + lactate + NAD (1)

В нормальных условиях формируется соотношение лактат: пируват = 10:1. Практически все клетки способны вырабатывать лактат. Ткани с высоким уровнем метаболизма (кишечник, мозг, скелетные мышцы и др.) привносят наибольший вклад в ежедневную продукцию лактата, формируя его нормальный уровень в крови около 1,3 ммоль/л. В норме суммарная продукция лактата составляет около 1,0 ммоль/кг/час, то есть суточная продукция в расчете на взрослого индивидуума колеблется от 1200 до 1500 ммоль. Базисная продукция лактата в энергично работающих скелетных мышцах может увеличиваться в десятикратном размере, что определяет интерес к уровню лактата крови в спортивной медицине. На фоне интенсивных физических упражнений уровень лактата крови повышается в 10—15 раз по сравнению с базовым, отражая напряженность метаболических процессов аэробного и анаэробного гликолиза. Динамика роста уровня лактата позволяет определять наиболее перспективных спортсменов в таких видах спорта как гребля, легкая атлетика, лыжные гонки и др. Это повышение абсолютно разнится от описанного J. Meakins и другими авторами повышения лактата у критических больных.

Метаболизация лактата осуществляется в основном в печени путем превращения в пируват. Следовательно, уровень лактата зависит от метаболизма пирувата. Для понимания роли пирувата важна реакция конверсии пирувата в ацетил-коэнзим-А под воздействием пируватдегидрогеназы, который затем, в свою очередь, метаболизируется в цикле Кребса (цикл трикарбоновых кислот) с последующим окислительным фосфорилированием с образованием основного универсального источника энергии — аденозинтрифосфата (АТФ). Пируват может быть использован также для регенерации глюкозы путем конверсии в оксалоацетат. Таким образом, лактат может быть превращен обратно в глюкозу, которая, соответственно, может быть метаболизирована в лактат (так называемый цикл Кори). Восстановление глюкозы из лактата является важным механизмом и удаления лактата из системного кровотока после длительной тканевой гипоксии (например, после остановки сердечной деятельности). И, наконец, пируват может быть преобразован в аланин и альфа-кетоглютамат. Обратимость этой реакции восстанавливает пируват, который может быть использован для окисления или глюконеогенеза. Из уравнения 1 мы можем сделать заключение, что даже в случае нормального соотношения NAD/NADH и рН клетки, уровень лактата будет расти при избыточном образовании пирувата, нарушении его утилизации или конверсии в ацетил-коэнзим-А. Утилизация пирувата нарушается при дефиците пируватдегидрогеназы (врожденные нарушения метаболизма). Дисфункция пируватдегидрогеназного комплекса может проявляться также при сепсисе, приводя к повышению уровня пирувата и лактата в крови. Клинически наиболее значимой причиной снижения утилизации пирувата является дефицит клетки по кислороду, так как оба процесса: и окисление пирувата, и глюконеогенез требуют наличия кислорода. Следовательно, при дефиците кислорода глюкоза в большей степени конвертируется в лактат с образованием только 2 молей АТФ вместо 34 молей при метаболизации в цикле Кребса.

Существует три механизма транспорта лактата через мембрану клетки:

В соответствии с последним механизмом при ацидозе увеличивается захват лактата клетками (например, скелетной мускулатуры и кардиомиоцитами). В противоположность этому при алкалемии происходит выброс лактата из клетки, приводя к повышению уровня лактата в крови. Также при алкалемии играет определенную роль стимуляция фосфофруктозокиназы, приводящая к усилению гликолиза и, соответственно, к продукции лактата. Несмотря на то, что повышение уровня лактата в крови часто сопровождается развитием ацидоза (так называемый лактацидоз), продукция лактата не ведет напрямую к выбросу Н + ионов, так как Н + ионы утилизируются при продукции АТФ из АДФ или АМФ:

Неспособность клеток утилизировать Н + ионы, генерируемые при гидролизе АТФ, является основной причиной развития метаболического ацидоза при гипоксических состояниях.

Типы нарушений уровня лактата крови

Лактацидоз как клинический синдром был впервые описан Huckabee в 1961 году: это повышение уровня лактата крови вследствие его гиперпродукции или снижения элиминации, или сочетание этих факторов. Cohen и Woods в 1976 году выделили четыре типа лактацидоза: А, В1, В2, В3.

Тип А — наиболее часто встречающийся в клинической практике, является следствием снижения оксигенации тканей, то есть тканевой гипоксии (все виды шока, отравление моноксидом углерода, отек легких, острая асфиксия, застойная сердечная недостаточность и др.).

Расстройства, сгруппированные в тип B, не сопровождаются тканевой гипоксией вплоть до терминальных стадий заболеваний.

Тип В1 — пациенты с такими заболеваниями как диабет, болезни печени и почек, некоторые инфекции, неопластические процессы, судорожный синдром. Например, при большом судорожном синдроме уровень лактата повышается как вследствие ларингоспазма, так и вследствие гиперпродукции лактата в мышцах. При бактериемии одним из механизмов повышения лактата является повреждение пируватдегидрогеназного комплекса эндотоксином бактерий. При лейкемии и других неопластических процессах с хроническим повышением уровня лактата крови его снижение является признаком эффективности терапии цитолитиками.

Тип В2 — лактат-ацидоз, вызванный некоторыми препаратами или ядами. Терапия диабета бигуанидами сопровождается лактацидозом вследствие снижения активности пируваткарбоксилазы, приводящей к ингибиции глюконеогенеза. Механизм лактацидоза при отравлении этанолом не совсем понятен. Предполагается влияние судорожного синдрома, а также повышение соотношения NADH/NAD.

Тип В3 — включает достаточно редкие врожденные аномалии, связанные с нарушением митохондриального окисления пирувата.

Измерения лактата крайне важны в диагностике болезни McArdles (type 5 glycogen storage disease), встречающейся преимущественно у мужчин и проявляющейся мышечными болями и напряжением мышц после незначительных физических нагрузок. При увеличении нагрузок боль проходит, но развивается некроз мышц и миоглобинурия. Лабораторная диагностика основывается на отсутствии роста уровня лактата на фоне физических нагрузок.

Лактат и тканевая гипоксия (тип А лактацидоза)

В клинической практике уровень лактата в крови применяется для мониторирования уровня тканевой гипоксии: утилизация пирувата зависит от наличия кислорода и соответственно, снижение доставки кислорода к клеткам приводит к повышению продукции лактата и повышению его уровня в крови. Гипоксия тканей определяется как дисбаланс между потребностью в кислороде и его доставкой (DO2). При снижении доставки кислорода ткани обеспечивают потребность в нем, увеличивая экстракцию кислорода из артериальной крови. Это выражается в повышении индекса экстракции кислорода (O2ER) и снижении сатурации смешанной венозной крови (SvO2%). В норме в тканях экстрагируется около 25% кислорода, доставляемого артериальной кровью.

Доставка кислорода к тканям является производной содержания кислорода в артериальной крови (ctO2) и сердечного выброса (Qt).

ctHb — концентрация гемоглобина

SaO2% — сатурация артериальной крови

Снижение каждого компонента в уравнении может привести к снижению DO2. Обычно снижение концентрации гемоглобина или уровня сатурации компенсируется повышением сердечного выброса таким образом, что DO2 остается на уровне потребности и не наступает тканевой гипоксии. При срыве компенсаторных механизмов DO2 быстро снижается ниже критического уровня, снижается потребление кислорода тканями и повышается уровень лактата в крови. Этот феномен зависимости потребления от доставки был продемонстрирован в экспериментальных работах со снижением ctHb, SaO2% и Qt.

Shibutani, Komatsu et al. в работах 1983 и 1987 г. г. показали, что эффект зависимости потребления от доставки наступает при снижении DO2 ниже критического уровня в 300 мл/мин. Так как это была группа кардиохирургических больных со сниженными компенсаторными возможностями, снижение DO2 ниже критического уровня приводило к тканевой гипоксии и повышению уровня лактата. В 1990 году Vincent et al показали, что увеличение потребления кислорода у кардиохирургических больных с повышенным лактатом наступало только на фоне инфузии добутамина.

Интерпретация повышения уровня лактата у септических больных достаточно сложна. Тем не менее, в ранней фазе септического шока повышение уровня лактата в крови связано с наличием зависимости потребления от доставки и тканевой гипоксии.

В отсутствие тканевой гипоксии к повышению уровня пирувата приводит дисфункция пируватдегидрогеназного комплекса. Повышенный аэробный гликолиз увеличивает уровень внутриклеточного пирувата при отсутствии необходимости повышения продукции АТФ. Повышение активности Na+-K+-АТФ-азы в случае нормоксии клетки связано с этим механизмом аэробной продукции лактата (James JH, Fang CH et al, 1996). Описанный механизм важен для понимания повышения уровня лактата у септических больных, а также при врожденных метаболических аномалиях. Распад белков приводит к повышению выброса аминокислот, что может привести к повышению уровня пирувата в процессе глюконеогенеза. Третьим механизмом повышения лактата у септичеких больных в отсутствие тканевой гипоксии является снижение клиренса лактата (например, при снижении регионального кровотока и дисфункции печени).

Взаимоотношения уровня лактата и концентрации Н + иона далеки от прямолинейных. Исследование, проведенное в 1996 году Gutierrez и Wulf, выявило отсутствие тесной связи между уровнем лактата и концентрацией Н + ионов у септических больных. Авторы отметили влияние на эти отношения таких факторов, как наличие почечной дисфункции или уровня рСО2 вследствие манипуляций с аппаратом ИВЛ.

Суммируя вышесказанное, можно заключить, что повышение уровня лактата (сопровождаемое или нет системным ацидозом) отражает сложный комплекс метаболических нарушений, среди которых основными элементами являются увеличение аэробной или анаэробной продукции лактата и снижение его клиренса. Значимость этих элементов неоднозначна при различных патологических состояниях. Также нет прямой корреляции с другими клиническими и лабораторными признаками критического состояния. Все это создает необходимость измерения уровня лактата крови у критических больных, в противовес попыткам вывести лактат как расчетный показатель на основании других параметров.

Техника измерения и вид пробы

Впервые описанное Gaglio в 1886 году измерение уровня лактата требовало 100—200 мл крови и несколько дней для получения результата. Broder и Weil, впервые применив в 1964 году метод спектрофотометрии, существенно сократили время измерения, что позволило оценивать динамику уровня лактата у критических больных. Поистине революционным оказалось создание специфического лактат-электрода в составе анализатора газов крови и КОС, что позволило получать лактат за 1—2 минуты измерения из 100—150 мкл цельной крови наряду с другими параметрами ургентной диагностики критического больного. Важна возможность получения параметра из цельной крови, а не из плазмы или сыворотки, что требовало бы дополнительное время на сепарацию. Наиболее приемлема для оценки уровня лактата, также как и других параметров ургентной диагностики, артериальная кровь. Однако, допустимо также и взятие смешанной венозной крови. Капиллярная проба может быть альтернативой только в случае невозможности взятия артериальной пробы. При этом должны быть соблюдены правила забора пробы, препятствующие искажению результата. Проба крови по возможности должна быть немедленно исследована. В случае задержки она должна храниться в так называемой «ледяной бане», то есть охлажденной до 1—4 С°, что позволяет в несколько раз снизить уровень метаболизма в пробе цельной крови.

Клиническое значение измерения лактата крови

Измерение уровня лактата крови должно быть частью оценки любого больного в критическом состоянии. Уровень лактата крови в качестве маркера сложных метаболических нарушений, является хорошим предиктором в интенсивной практике.

По данным Roumen и Redl, опубликованным в 1993 году, лактат оказался лучшим предиктором развития респираторного дистресс-синдрома и полиорганной недостаточности у больных с политравмой, нежели такая известная многокомпонентная шкала оценки критического больного как APACHE. Снижение уровня лактата крови на фоне интенсивной терапии оказалось хорошим показателем ее адекватности.

Da Silva и Hemneber в публикации 2000 года показали значимость и сопряженность измеренных у новорожденного на 30 мин после родов таких параметров, как дефицит оснований и уровень лактата в крови в качестве прогностических признаков неврологических нарушений после перенесенной внутриродовой асфиксии. Лактемия меньше 5 ммоль/л и/или дефицит оснований менее 10 ммоль/л не приводили к неврологическим осложнениям. Концентрация лактата более 9 ммоль/л была связана с умеренной или тяжелой энцефалопатией с чувствительностью 84% и специфичностью 67%.

Тимербаев В. Х. с соавт. в публикации 2005 года продемонстрировали значимость интраоперационной динамики лактата крови, отражающего изменения тканевой перфузии и тканевого газообмена у больных с политравмой, осложнившейся геморрагическим шоком. Динамику лактата крови авторы использовали в качестве критерия эффективности проводимой терапии и предиктора летального исхода.

Лечение ВИЧ-инфекции аналогами нуклеозидов нередко сопровождается лактацидозом, то есть повышением уровня лактата более 5 ммоль/л с параллельным сниженим рН зачем пируват превращается в лактат. file doc. зачем пируват превращается в лактат фото. зачем пируват превращается в лактат-file doc. картинка зачем пируват превращается в лактат. картинка file doc.Клиническое значение уровня лактата крови в лабораторной экспресс-диагностике 77824

Источник

Лактат

Молочная кислота (лактат) — конечный продукт гликолиза (аэробного расщепления глюкозы). Реакция гликолиза разделяет молекулу глюкозы на молекулы пирувата. При достаточном поступлении кислорода пируват подвергается метаболизму в митохондриях до воды и углекислоты. В анаэробных условиях, при недостаточном поступлении кислорода, пируват преобразуется в лактат. В условиях покоя основной источник лактата в плазме — эритроциты. При физической нагрузке лактат выходит из мышц, превращается в пируват в печени или метаболизируется тканью мозга и сердцем. Небольшое количество лактата всегда присутствует в кровотоке. Повышается концентрация лактата в крови при тканевой гипоксии из-за снижения перфузии ткани или уменьшения содержания кислорода в крови. Накопление лактата может уменьшить рН крови и привести к метаболическому ацидозу (изменение кислотно-щелочного равновесия организма в результате недостаточного выведения и окисления органических кислот).

Увеличение концентрации лактата отражает степень ишемии тканей. Содержание лактата в крови при гипоксических состояниях возрастает соответственно тяжести гипоксии. Накопление лактата — одна из причин ком, в частности, гиперлактацидемической диабетической комы.

Лактат венозной крови является ценным диагностическим тестом для оценки тяжести шока и предшествующих состояний. Уровень лактата коррелирует с неблагоприятным прогнозом в периоперационном периоде, в палате интенсивной терапии и реанимации.

Одним из последних направлений в травматологии, критической и срочной медицине, анестезиологии является определение уровня лактата при травмах или тяжелых заболеваниях пациентов.

Концентрация лактата при физической нагрузке коррелирует с развитием утомления. Тест применяется в спортивной медицине для оценки уровня физической нагрузки.

В патологии лактоацидоз (закисление крови вследствие накопления лактата) чаще всего наблюдается при уменьшении доставки кислорода к тканям (тип А), вследствие снижения кровотока (шок, сепсис) или снижения парциального давления кислорода (тяжёлые заболевания лёгких, задержка дыхания). Реже причиной лактоацидоза являются метаболические сдвиги, приводящие к увеличению продукции лактата (тип В) – например, повышенная мышечная активность (чрезмерная физическая нагрузка, эпилептический статус), опухоли (особенно лейкемии и лимфомы) или изменения метаболизма печени (алкогольная интоксикация).

Лактат является метаболическим продуктом пропиленгликоля, входящего в состав растворителя для многих внутривенных препаратов. У пациентов со сниженной функцией почек при продолжительных инфузиях таких растворов может накапливаться повышенное количество лактата.

Показания к назначению исследования:

Повышение значений (лактацидоз):

Понижение значений:

Источник

Зачем пируват превращается в лактат

Все биологические процессы, происходящие в окружающем мире, по своей сути являются химическими реакциями. Первую химическую реакцию человек осуществил, когда разжег костер – это реакция горения. Первое антибактериальное применение продуктов брожения и величайшее открытие в области медицины совершил Нострадамус. Большинство из нас знает его как предсказателя, но его основная заслуга состоит в том, что он нашел способ борьбы с чумой с помощью уксусной кислоты. История свидетельствует, чума лишила Нострадамуса и первой семьи, и друзей. С тех пор он искал средство борьбы от страшной болезни. Найдя чудо-лекарство, исследователь переезжал из города в город, где появлялась чума, спасая множество жизней [1].

Первым биохимиком была клетка, которая научилась энергетическому обмену: научилась поглощать свет и выделять энергию, необходимую для жизнеобеспечения. Таким образом, первый биохимик – это и есть сама жизнь. Все процессы, которые протекают в клетках живого организма, – это биохимические реакции.

Название «углеводы» появилось из-за того, что многие представители данного класса имеют общую формулу: Сn(Н2О)m, где n и m >= 4. Известно множество углеводов, не соответствующих этой формуле, но несмотря на это термин «углеводы» употребляется и по сей день. Другое общепринятое название этого класса соединений – сахара.

Все углеводы можно разделить на четыре больших класса.

Моносахариды – это гетерофункциональные соединения, содержащие оксогруппу и несколько гидроксильных групп. Они не могут быть гидролизованы до более простых форм углеводов и являются структурной единицей любых углеводов, например, глюкоза, фруктоза, рибулоза, рамноза. Содержатся в различных продуктах: фрукты, мёд, некоторые виды вина, шоколад.

Олигосахариды – это соединения, построенные из нескольких остатков моносахаридов, связанных между собой гликозидной связью. Они делятся по числу моносахаридов в молекуле на дисахариды, трисахариды и т.д. К биологически активным производным олигосахаридов относятся некоторые антибиотики, сердечные гликозиды.

Дисахариды – это углеводы, которые при гидролизе дают две одинаковые или различные молекулы моносахарида и связаны между собой гликозидной связью, например, лактоза, сахароза, мальтоза. При гидролизе из дисахаридов образуется глюкоза.

Полисахариды – имеют общий принцип строения с олигосахаридами, за исключением моносахаридных остатков – полисахариды могут содержать их сотни и даже тысячи. Примеры: крахмал, гликоген, хитин, целлюлоза [2].

Для лучшего понимания реакций расщепления углеводов в организме, рассмотрим более подробно глюкозу, участвующую в этих процессах.

Глюкоза является одним из самых распространенных углеводов в природе, моносахарид, или гексоза С6Н12О6. Второе её название – виноградный сахар. Это растворимое в воде вещество белого цвета, сладкое на вкус. В молекуле глюкозы имеется четыре неравноценных асимметрических атома углерода (рис. 1):

зачем пируват превращается в лактат. naum1 fmt. зачем пируват превращается в лактат фото. зачем пируват превращается в лактат-naum1 fmt. картинка зачем пируват превращается в лактат. картинка naum1 fmt.

Рис. 1. Строение молекулы глюкозы

Для такого соединения возможно 24 = 16 стереоизомеров, которые образуют 8 пар зеркальных оптических антиподов. Каждое из восьми соединений представляет собой диастереомер (диа – двойной) с присущими только ему физическими свойствами (растворимость, температура плавления и т.д.).

Глюкоза содержится в растительных и живых организмах. Велико ее содержание в виноградном соке, в меде, фруктах и ягодах, в семенах, листьях крапивы. Глюкоза повышает работоспособность мозга, благотворно влияет на нервную систему человека. Именно поэтому в стрессовых ситуациях люди иногда хотят чего-нибудь сладкого. Помимо этого, глюкоза применяется в медицине для приготовления лечебных препаратов, консервирования крови, внутривенного вливания и т.д. Она широко применяется в кондитерском производстве, производстве зеркал и игрушек (серебрение). Ее используют при окраске тканей и кож.

Биохимические реакции расщепления углеводов в организме человека

Для поддержания жизнедеятельности организма используется энергия, скрытая в химических связях продуктов питания. Во многих продуктах питания содержится значительное количество углеводов в виде полисахаридов (сахар, крахмал, клетчатка) и моноз (глюкоза, фруктоза, лактоза и др.). К примеру, в картофеле содержание крахмала составляет до 16 %, в рисе – 78 %, а в белом хлебе – 51 %.

Уже во рту человека начинается процесс расщепления углеводов. Происходит гидролиз крахмала под действием биологического катализатора – фермента амилазы, который содержится в пище. Под действием амилазы молекула крахмала расщепляется на довольно короткие цепочки, которые состоят из глюкозных звеньев. После этого углеводы попадают в желудок. Далее под действием желудочного сока заканчивается кислотный гидролиз крахмала. Крахмал распадается до отдельных глюкозных звеньев. Глюкоза попадает в кишечник и через стенки кишок поступает в кровь, разносящую её по всему человеческому организму.

Содержание глюкозы в крови поддерживается на постоянном уровне при помощи гормона инсулина, который выделяется поджелудочной железой. Инсулин полимеризует избыточную глюкозу в животный крахмал – гликоген, который откладывается в печени. Часть гликогена в печени может гидролизоваться в глюкозу, далее поступающую обратно в кровь. Это происходит при понижении содержания глюкозы в крови. Если поджелудочная железа не может вырабатывать инсулин, содержание глюкозы в крови повышается, что приводит к диабету. Именно поэтому людям, болеющим сахарным диабетом, необходимо регулярно вводить в кровь инсулин.

Молекула глюкозы, попадая в клетку организма, окисляется, «сгорает» с образованием воды и диоксида углерода. При этом выделяется энергия, необходимая организму для движения, согревания, осуществления различных физических нагрузок и т.д. Но биологическое окисление глюкозы похоже на обычное горение лишь по своим конечным результатам. Биологическое окисление – процесс медленный, многоступенчатый. Только малая часть высвобождаемой при окислении энергии превращается на каждой стадии данного процесса в тепло. Значительная доля энергии, заключенной в химических связях глюкозы, расходуется на образование других веществ, из которых важнейшее в биоэнергетике – аденозинтрифосфорная кислота C10H16N5O13P3 (АТФ). Это соединение состоит из трех частей – гетероцикла аденина, рибозы (сахара) и трех остатков фосфорной кислоты, образующей с рибозой сложный эфир (рис.2).

зачем пируват превращается в лактат. naum2 fmt. зачем пируват превращается в лактат фото. зачем пируват превращается в лактат-naum2 fmt. картинка зачем пируват превращается в лактат. картинка naum2 fmt.

Рис. 2. Структура аденозинтрифосфорной кислоты

АТФ в клетках – универсальная энергетическая валюта. Множество ферментов умеют вести химические реакции, осуществляющиеся с затратой энергии, за счет гидролитического отщепления одного или двух остатков фосфорной кислоты от молекулы АТФ (этот процесс сопровождается выделением энергии), или наоборот, умеют использовать энергию, которая высвобождается в реакциях с выделением энергии для того, чтобы АТФ образовалась. Расщепляя АТФ, клетка использует высвобождаемую энергию на биосинтез различных соединений, а окисляя углеводы – синтезирует АТФ.

Первая стадия «сгорания» глюкозы в клетке – взаимодействие глюкозы с АТФ (рис. 3). При этом АТФ переходит в АДФ (аденозиндифосфат C10H15N5O10P2), а глюкоза – в 6-фосфат. Этот процесс фосфорилирования происходит под действием фермента гексокиназы за счет перенос остатка фосфорной кислоты (H3PO4) от фосфорилирующего агента – донора к субстрату:

зачем пируват превращается в лактат. naum3 fmt. зачем пируват превращается в лактат фото. зачем пируват превращается в лактат-naum3 fmt. картинка зачем пируват превращается в лактат. картинка naum3 fmt.

Рис. 3. Взаимодействие глюкозы с АТФ

Следующий этап окисления – «рокировка» глюкозофосфата во фруктозофосфат, который происходит под действием фермента изомеразы (рис.4). Рокировка типа глюкоза–фруктоза делает доступным для фосфорилирования еще один гидроксил сахара (т.к. взаимодействовать с АТФ могут только краевые гидроксилы):

зачем пируват превращается в лактат. naum4 fmt. зачем пируват превращается в лактат фото. зачем пируват превращается в лактат-naum4 fmt. картинка зачем пируват превращается в лактат. картинка naum4 fmt.

Рис. 4. Взаимодействие глюкозо-6-фосфата и фермента изомеразы

После второго фосфорилирования уже под действием другого фермента – фосфорфруктокиназы – получается в итоге фруктозо-1,6-дифосфат (C6H14O12P2 ) (рис.5):

зачем пируват превращается в лактат. naum5 fmt. зачем пируват превращается в лактат фото. зачем пируват превращается в лактат-naum5 fmt. картинка зачем пируват превращается в лактат. картинка naum5 fmt.

Рис. 5. Взаимодействие фруктозо-6-фосфата и 6-фосфоруктокиназы

Фруктозо-1,6-дифосфат распадается на две части. Получается дигидроксиацетонфосфат ( C3H7O6P ) и глицеральдегид-3-фосфат ( C3H7O6P) (рис. 6).

зачем пируват превращается в лактат. naum6 fmt. зачем пируват превращается в лактат фото. зачем пируват превращается в лактат-naum6 fmt. картинка зачем пируват превращается в лактат. картинка naum6 fmt.

Рис. 6. Распад Фруктозо-1,6-дифосфата

Клетке нужен только второй продукт, и она с помощью фермента изомеразы превращает первый фосфат во второй (чтобы не было отходов производства) (рис. 7).

зачем пируват превращается в лактат. naum7 fmt. зачем пируват превращается в лактат фото. зачем пируват превращается в лактат-naum7 fmt. картинка зачем пируват превращается в лактат. картинка naum7 fmt.

Рис. 7. Превращение диоксиацетон-фосфата в глицеральдегид-3-фосфат

На данной стадии в реакцию вступают два соединения: глутатион – соединение, несущее меркаптогруппу SН и никотинамидаденинуклеотид (НАД). НАД легко присоединяет водород: НАД-Н2.

Далее развивается процесс, мало изученный в деталях, но описать его можно пока следующим образом. Под действием НАД и его восстановленной формы, фермента дегидрогеназы и фосфорной кислоты, глицеральдегид-3-фосфат превращается в смешанный ангидрид 3-фосфоглицериновой и фосфорной кислот (рис. 8).

зачем пируват превращается в лактат. naum8 fmt. зачем пируват превращается в лактат фото. зачем пируват превращается в лактат-naum8 fmt. картинка зачем пируват превращается в лактат. картинка naum8 fmt.

Рис. 8. Превращение глицеральдегид-3-фосфата в смешанный ангидрид 3-фосфоглицериновой и фосфорной кислот

Всё это время энергия только поглощалась, так как АТФ переходил в АДФ. Теперь в реакции будет вступать АДФ, а в продуктах появится АТФ, и энергия будет выделяться. Так, под действием АДФ и фермента фосфоглицераткиназы образуется 3-фосфоглицериновая кислота (рис. 9).

зачем пируват превращается в лактат. naum9 fmt. зачем пируват превращается в лактат фото. зачем пируват превращается в лактат-naum9 fmt. картинка зачем пируват превращается в лактат. картинка naum9 fmt.

Рис. 9. Образование 3-фосфоглицерата

В ней фермент фосфоглицеромутаза вызывает «рокировку» фосфатной группы в положение 2 (рис. 10).

зачем пируват превращается в лактат. naum10 fmt. зачем пируват превращается в лактат фото. зачем пируват превращается в лактат-naum10 fmt. картинка зачем пируват превращается в лактат. картинка naum10 fmt.

Рис. 10. Превращение 3-фосфоглицерата в 2-фосфоглицерат

На полученный продукт воздействует фермент енолаза и АДФ – получается пировиноградная кислота (рис. 11, 12).

зачем пируват превращается в лактат. naum11 fmt. зачем пируват превращается в лактат фото. зачем пируват превращается в лактат-naum11 fmt. картинка зачем пируват превращается в лактат. картинка naum11 fmt.

Рис. 11. Дегидратация 2-фосфоглицерата

зачем пируват превращается в лактат. naum12 fmt. зачем пируват превращается в лактат фото. зачем пируват превращается в лактат-naum12 fmt. картинка зачем пируват превращается в лактат. картинка naum12 fmt.

Рис. 12. Перенос фосфорильной группы с фосфоенолпирувата на АДФ. Образование пирувата

Процесс превращения глюкозы в пировиноградную кислоту в клетке называется гликолизом [3]. В результате гликолиза клетка получает из одной молекулы глюкозы восемь молекул АТФ и две молекулы пировиноградной кислоты. Превращение глюкозы в пировиноградную кислоту является первой стадией, общей для нескольких процессов. То же самое происходит под действием дрожжей на раствор сахара. Но реакция не закачивается получением пировиноградной кислоты. От этой кислоты отщепляется (под действием фермента декарбоксилазы) молекула диоксида углерода и образуется уксусный альдегид, который, в свою очередь, атакуется ферментом дегидрогеназой и НАД-Н2. В результате при отсутствии кислорода получается этиловый спирт.

На самом деле уравнение этого сложного процесса выглядит довольно просто:

С6Н12О6 à 2С2Н5ОН + 2СО2

Это и есть процесс брожения. В мышцах НАД-Н2 восстанавливает пировиноградную кислоту в молочную. Это происходит при большой нагрузке, когда кровь не успевает подводить кислород в нужном количестве. Поэтому у спортсменов, пробежавших дистанцию, резко увеличивается в крови количество молочной кислоты [4].

Ферменты – это биологические катализаторы, имеющие белковую природу, помогающие ускорить химические реакции как в живых организмах, так и вне их. Ферменты обладают высокой каталитической активностью. К примеру, чтобы расщепить молекулу полиуглевода (крахмал, целлюлозу) или какой – либо белок на составные части, их нужно несколько часов кипятить с крепкими растворами щелочей либо кислот. А ферменты пищеварительных соков (пепсин, протеаза, амилаза) способны гидролизовать эти вещества буквально за несколько секунд при температуре 37 °С. Помимо этого, ферменты обладают избирательностью своего действия в отношении структуры субстрата, условий проведения реакции и её типа (фермент превращает только данный тип субстратов в определенных реакциях и условиях). Ферменты катализируют огромное количество реакций, протекающих в живой клетке при размножении, дыхании, обмене веществ и т.д. [5].

В современном понимании биохимическое расщепление углеводов – это метаболический процесс, при котором регенерируется АТФ, а продукты расщепления органического субстрата могут служить одновременно и донорами, и акцепторами водорода. Огромную роль в биохимических процессах играют микроорганизмы, ферменты и катализаторы. Считается, что анаэробный гликолиз (расщепление углеводов) был первым источником энергии для общих предков всех живых организмов до того, как концентрация кислорода в атмосфере стала достаточно высокой, и поэтому эта форма генерации энергии в клетках – более древняя. За очень редкими исключениями она существует и у всех ныне живущих клеток.

В настоящее время ученые считают, что все реакции биохимического расщепления углеводов на начальной стадии имеют общую схему вплоть до образования пировиноградной кислоты. Затем, в зависимости от условий и качества ферментов, из пировиноградной кислоты образуются конечные продукты реакции: спирты, кислоты (уксусная, лимонная, молочная, яблочная, масляная и т.д.), альдегиды, углекислый газ, водород, вода и пр.

Изучение биохимических реакций расщепления углеводов в организме человека и анализ использованных источников позволили сделать следующие выводы:

1. В общем виде схему механизма расщепления углеводов можно представить следующим образом: сложный углевод (дисахарид, полисахарид) à глюкоза à эфиры фосфорных кислот à глицериновый альдегид à глицериновая кислота à пировиноградная кислота à далее возможны любые упомянутые выше направления.

2. Биохимические реакции углеводов лежат в основе жизнедеятельности клеток живых организмов, в том числе и человека.

3. Биохимические процессы расщепления углеводов, которые изображаются простыми, на первый взгляд, уравнениями начальных и конечных продуктов, на самом деле представляют собой сложные и многоступенчатые процессы.

4. Для осуществления биохимических процессов необходимы ферменты и катализаторы, которые ускоряют реакции расщепления углеводов в тысячи раз.

Изучая сложнейшие процессы, происходящие в живой клетке, ученые задумываются: а нельзя ли, научившись у природы, провести в колбах и ретортах искусственные химические процессы, копирующие биохимические реакции? Начатые по инициативе академика Н.Н. Семенова, такие исследования в области «химической бионики» успешно ведутся в России и во всем мире [6].

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *