зачем нужны биотехнологии в современном мире

Роль биотехнологии в современном мире

Развитие и преобразование биотехнологии обусловлено глубокими переменами, происшедшими в биологии в течение последних 25-30 лет. Основу этих событий составили новые представления в области молекулярной биологии и молекулярной генетики. В то же время нельзя не отметить, что развитие и достижения биотехнологии теснейшим образом связаны с комплексом знаний не только наук биологического профиля, но также и многих других.

Расширение практической сферы биотехнологии обусловлено также социально-экономическими потребностями общества. Такие актуальные проблемы, стоящие перед человечеством на пороге ХХ1 в., как дефицит чистой воды и пищевых веществ (особенно белковых), загрязнение окружающей среды, недостаток сырьевых и энергетических ресурсов, необходимость получения новых, экологически чистых материалов, развития новых средств диагностики и лечения, не могут быть решены традиционными методами. Поэтому для жизнеобеспечения человека, повышения качества жизни и ее продолжительности становится все более необходимым освоение принципиально новых методов и технологий.

Развитие научно-технического прогресса, сопровождающееся повышением темпов материальных и энергетических ресурсов, к сожалению, приводит к нарушению баланса в биосферных процессах. Загрязняются водные и воздушные бассейны городов, сокращается воспроизводительная функция биосферы, вследствие накопления тупиковых продуктов техносферы нарушаются глобальные круговоротные циклы биосферы.

Автор задает вопрос: не окажется ли судьба человечества судьбой бегуна и не путь ли к гибели человечества столь стремительное развитие научно-технического прогресса?

Зеленая биотехнология охватывает область, значимую для сельского хозяйства. Это исследования и технологии, направленные на создание биотехнологических методов и препаратов для борьбы с вредителями и возбудителями болезней культурных растений и домашних животных, создание биоудобрений, повышение продуктивности растений, в том числе с использованием методов генетической инженерии.

Серая биотехнология занимается разработкой технологий и препаратов для защиты окружающей среды; это рекультивация почв, очистка стоков и газовоздушных выбросов, утилизация промышленных отходов и деградация токсикантов с использованием биологических агентов и биологических процессов.

Синяя биотехнология в основном ориентирована на эффективное использование ресурсов Мирового океана. Прежде всего, это использование морской биоты для получения пищевых, технических, биологически активных и лекарственных веществ.

Госпрограммы предусматривают выдачу инвесторам безвозмездных ссуд, долгосрочных кредитов, освобождение от уплаты налогов. В связи с тем что проведение фундаментальных и ориентированных работ становится все более дорогостоящим, многие страны стремятся вывести значительную часть исследований за пределы национальных границ.

Особенности развития исследований и коммерциализации биологических технологий в США, Японии, странах ЕС и России

США. Лидирующее положение в биотехнологии по промышленному производству биотехнологических продуктов, объемам продаж, внешнеторговому обороту, ассигнованиям и масштабам НИОКР занимают США, где уделяется огромное внимание развитию данного направления. В этом секторе к 2003 г. было занято свыше 198 300 чел.

Ассигнования в этот сектор науки и экономики в США значительны и составляют свыше 20 млрд дол. США ежегодно. Доходы биотехнологической индустрии США выросли с 8 млрд дол. в 1992 г. до 39 млрд дол. в 2003 г.

Эта отрасль находится под пристальным вниманием государства. Так, в период становления новейшей биотехнологии и возникновения ее направлений, связанных с манипулированием генетическим материалом, в середине 70-х гг. прошлого столетия конгресс США уделял большое внимание вопросам безопасности генетических исследований. Только в 1977 г. состоялось 25 специальных слушаний и было принято 16 законопроектов.

В начале 90-х гг. акцент сместился на разработку мер по поощрению практического использования биотехнологии для производства новых продуктов. С развитием биотехнологии в США связывают решение многих ключевых проблем: энергетической, сырьевой, продовольственной и экологической.

Среди биотехнологических направлений, близких к практической реализации или находящихся на стадии промышленного освоения, следующие:
— биоконверсия солнечной энергии;
— применение микроорганизмов для повышения выхода нефти и выщелачивания цветных и редких металлов;
— конструирование штаммов, способных заменить дорогостоящие неорганические катализаторы и изменить условия синтеза для получения принципиально новых соединений;
— применение бактериальных стимуляторов роста растений, изменение генотипа злаковых и их приспособление к созреванию в экстремальных условиях (без вспашки, полива и удобрений);
— направленный биосинтез эффективного получения целевых продуктов (аминокислот, ферментов, витаминов, антибиотиков, пищевых добавок, фармакологических препаратов;
— получение новых диагностических и лечебных препаратов на основе методов клеточной и генетической инженерии.

Роль лидера США обусловлена высокими ассигнованиями государства и частного капитала на фундаментальные и прикладные исследования. В финансировании биотехнологии ключевую роль играют Национальный научный фонд (ННФ), министерства здравоохранения и социального обеспечения, сельского хозяйства, энергетики, химической и пищевой промышленности, обороны, Национальное управление по аэронавтике и исследованию космического пространства (НАСА), внутренних дел. Ассигнования выделяются по программно-целевому принципу, т.е. субсидируются и заключаются контракты на исследовательские проекты.

При этом крупные промышленные компании устанавливают деловые отношения с университетами и научными центрами. Это способствует формированию комплексов в той или иной сфере, начиная от фундаментальных исследований до серийного выпуска продукта и поставки на рынок. Такая «система участия» предусматривает формирование специализированных фондов с соответствующими экспертными советами и привлечение наиболее квалифицированных кадров.

При выборе проектов с высокой коммерческой результативностью стало выгодным использовать так называемый «анализ с учетом заданных ограничений». Это позволяет существенно сократить сроки реализации проекта (в среднем с 7-10 до 2-4 лет) и повысить вероятность успеха до 80 %. Понятие «заданные ограничения» включают потенциальную возможность успешной продажи продукта и получения прибыли, увеличения годового производства, конкурентоспособность продукта, потенциальный риск с позиций сбыта, возможности перестройки производства с учетом новых достижений и т.д.

Ежегодные общие государственные расходы США на генно-инженерные и биотехнологические исследования составляют миллиарды долларов. Инвестиции частных компаний существенно превосходят эти показатели. Только на создание диагностических и противоопухолевых препаратов ежегодно выделяется несколько миллиардов долларов. В основном это следующие направления: методы рекомбинации ДНК, получение гибридов, получение и применение моноклональных антител, культуры тканей и клеток.

Существует мнение, что все необходимые условия для становления и развития биотехнологии в США подготовил венчурный бизнес. Для крупных фирм и компаний венчурный бизнес является хорошо отработанным приемом, позволяющим за более короткий срок получить новые разработки, привлекая для этого мелкие фирмы и небольшие коллективы, нежели заниматься этим собственными силами.

Например, в 80-е гг. General Electric с помощью мелких фирм стал осваивать производство биологически активных соединений, только в 1981 г. его рисковые ассигнования в биотехнологии составили 3 млн дол. Риск с участием мелких фирм обеспечивает крупным компаниям и корпорациям механизм отбора экономически оправданных нововведений с большими коммерческими перспективами.

Источник

Записки биоинженера: станут ли биотехнологии доступными для всех

зачем нужны биотехнологии в современном мире. 756215094064926. зачем нужны биотехнологии в современном мире фото. зачем нужны биотехнологии в современном мире-756215094064926. картинка зачем нужны биотехнологии в современном мире. картинка 756215094064926.

Об эксперте: Валерия Коган, основательница агротех-стартапа Fermata и биотех-стартапа Smartomica.

Как развиваются биотехнологии сейчас

Согласно прогнозам Организации экономического сотрудничества и развития (ОЭСР), в развитых странах продукция биотехнологий будет составлять почти 3% ВВП, а сами биотехнологии будут применяться для получения 80% лекарств, 50% сельскохозяйственного производства и 35% продукции химической промышленности. Все идет к развитию биоэкономики, которая благодаря пандемии стала еще ближе.

Основные сферы использования биотехнологий сегодня — медицина, фармацевтика, промышленность, энергетика, сельское хозяйство, где BioTech-инновации позволяют снизить себестоимость продукции (в частности, в пищевой промышленности), развивать биомедицину и отрасль биофармацевтических препаратов. При этом на рынок выходят как продукты, заменяющие традиционные, так и совершенно новые.

Уже сегодня биотехнологии позволили появиться большому числу функциональных пищевых продуктов, призванных снизить риски развития заболеваний за счет высокого содержания (25-50% от суточной потребности) микронутриентов. Развитие этого направления важно для снижения нагрузки на медицину. Примером таких продуктов могут служить крупы (хлопья), обогащенные протеином и за счет этого поставляющие в организм больше белка, чем стандартные аналоги — 23 г (в 100 овсяных хлопьев) против 12,3 г. Также появилось немало новых сортов растений и пород животных, причем биотехнологии позволили ускорить процессы селекции (выведения): например, для выращивания сортов риса срок сместился с десяти до восьми лет, как показало исследование «Повышение глобальной продовольственной безопасности за счет ускорения селекции растений», проведенное в 2019 году.

Но не все запросы рынка еще покрыты — множество направлений находятся только на стадии развития. Например, технологии получения рекомбинатных белков (благодаря генной инженерии), разработка биопозитивных стройматериалов (положительно влияют на здоровье) и продуктов биоорганического синтеза. И очень остро стоит вопрос изменения климата, которое можно затормозить при помощи «зеленых» отраслей экономики — в том числе, биотехнологий: так, например, считают ученые, собравшиеся на конференции ООН в 2019 году.

зачем нужны биотехнологии в современном мире. 756226602465369. зачем нужны биотехнологии в современном мире фото. зачем нужны биотехнологии в современном мире-756226602465369. картинка зачем нужны биотехнологии в современном мире. картинка 756226602465369.

Почему биотехнологические решения дорогие

Заинтересованность правительства — один из ключевых факторов развития биотехнологий и определения их стоимости. Сегодня свыше 40 стран имеют национальные стратегии для продвижения биоэкономики. В нашей стране с 2012 года работала «Комплексная программа развития биотехнологий в Российской Федерации: Био2020», но в 2018 году в Минэкономразвития сообщили, что ее нужно пересмотреть, поскольку программа не предусматривала финансирования исследований. Какая стратегия заменит этот документ, переставший действовать в 2021 году, неизвестно. Но помимо финансирования в России очень не хватает института развития проектов в области биотехнологий, который бы целенаправленно инвестировал в этот сектор, а также комплексного нормативного обеспечения — на это игроки рынка обратили внимание в рамках IV ежегодного Аграрного форума России в 2019 году.

зачем нужны биотехнологии в современном мире. 755905969959059. зачем нужны биотехнологии в современном мире фото. зачем нужны биотехнологии в современном мире-755905969959059. картинка зачем нужны биотехнологии в современном мире. картинка 755905969959059.

Также на стоимость BioTech-решений влияет доступность ресурсов — технологических (исследовательских центров, конкретных аппаратов) и человеческих (специалистов). Чем их больше, тем ниже затраты на производство биотехнологических продуктов за счет возможности масштабировать разработки. И одновременно с этим нужно работать над прозрачностью операционной деятельности и логистикой, создающими дополнительные расходы.

Как «удешевить» технологии

В первую очередь, нужно повысить мощности в исследовательских центрах за счет закупки более современного и производительного оборудования — компьютеров нового поколения и других способов модернизации производственных мощностей. Это способствует повышению скорости цикла Design-Build-Test-Learn: «проектирование, сборка, тестирование, обучение». В сочетании с увеличением числа биотехнологов высокого класса это поможет масштабировать уже существующие разработки. Но для достижения всего этого нужно усиление коллаборации стейкхолдеров (государства и частного сектора).

В целом эволюция клинических исследований, которая позволит проводить все процедуры быстрее, точнее и качественнее, должна снизить затраты занятых в биотехнологиях специалистов и соответственно сделать BioTech-продукты доступнее в цене. Это в свою очередь должно способствовать массовому распространению таких продуктов, что и является основной целью BioTech-компаний. Потому что нет ничего более выгодного, чем сделать лекарство или диагностический метод, который оплачивает страховая: это не сопоставимо по привлекательности с «продуктами для богатых».

Станет ли биотех доступнее

Применение любых инноваций в этой сфере, особенно в области здравоохранения, невозможно без государственного «разрешения» и соответствующего регулирования. Также есть фактор времени, но его компании постепенно обходят: например, в Национальном институте биомедицинской визуализации и биоинженерии (National Institute of Biomedical Imaging and Bioengineering, NIBIB) смогли разработать технологию, позволяющую печатать орган не за шесть часов, а за 19 минут. Помимо этого присутствует фактор стоимости готовых решений, однако она со временем все же снижается: как это происходит, например, с методикой секвенирования генома, которая за десять лет подешевела почти в 10 тыс. раз.

зачем нужны биотехнологии в современном мире. 755884129618278. зачем нужны биотехнологии в современном мире фото. зачем нужны биотехнологии в современном мире-755884129618278. картинка зачем нужны биотехнологии в современном мире. картинка 755884129618278.

Впрочем, определенный уровень «массовости» уже достигнут даже в медицинской отрасли, хотя об этом известно лишь в научных кругах: например, российская компания MaxBionic продает бионические протезы, а в рамках соцстрахования РФ их даже можно получить бесплатно. А, к примеру, в американском штате Северная Каролина работает Институт регенеративной медицины Уэйк-Форест (Wake Forest Institute for Regenerative Medicine), который несколько лет занимается не только печатью искусственных органов, но и их трансплантацией людям — еще в 2006 году пациенты получили мочевые пузыри с 3D-принтера. В 2016-м в институте стали делать уши, хрящи, кости рук и тела, сохраняющие стабильность после пересадки. А в 2019 году разработали биопринтер для печати кожи напрямую на рану. Помимо этого в институте создают миниатюрные копии сердца, печени и других органов, чтобы проверять на них действие лекарственных препаратов и выявлять побочные эффекты.

зачем нужны биотехнологии в современном мире. 755717458985222. зачем нужны биотехнологии в современном мире фото. зачем нужны биотехнологии в современном мире-755717458985222. картинка зачем нужны биотехнологии в современном мире. картинка 755717458985222.

Еще одна сложная, но также уже доступная не только для экспериментов медицинская биотехнология — онколитические вирусы, которые применяются в виротерапии онкологических заболеваний. Суть в заражении опухоли модифицированным вирусом (аденовирусом, герпесвирусом, энтеровирусом), чтобы сделать ее клетки иммуногенными: это позволяет собственному иммунитету человека бороться против онкологии. Помимо этого и сам вирус разрушает опухоль, поэтому получается терапия двойного действия. Виротерапия наиболее эффективна на ранней стадии как профилактика метастазирования (размножения в другие органы). Но технология не является заменой химио- или лучевой терапии и используется в перерывах между применением этих методик.

Куда движется биотех

Развитием индустрии все сильнее будут управлять социальные факторы, потому что многие новые биотехнологии вызывают общественные дебаты о том, что в них превалирует — ценность или опасность. Например, технология генного драйва — часть генной инженерии, позволяющая изменить вероятность того, что определенный аллель перейдет к потомству.

Аллель — одна из форм определенного гена, в одинаковых областях парных хромосом.

Фактически, она позволяет модифицировать целую популяцию живых организмов — например, навсегда избавить человечество от малярийных комаров: это одна из самых распространенных идей применения генного драйва. Для этого достаточно поместить в комаров гены, не позволяющие им инфицироваться одноклеточными плазмодиями (возбудитель малярии). С течением времени генетически модифицированные комары создадут «безопасную» популяцию, а «старые» вымрут.

В 2015 году ученые из Имперского колледжа Лондона при помощи CRISPR/Cas9 создали генный драйв, чтобы вызвать бесплодие у малярийных комаров. По последним данным официального портала Imperial College London, за 7-11 поколений удалось полностью избавиться от популяции переносчика болезни, но до начала тестирования технологий в дикой природе, по мнению ученых, еще около пяти-десяти лет. Однако при всей пользе генного драйва в вопросе избавления от ряда инфекций или наследственных заболеваний, у него есть другая сторона: риск биотерроризма и просто непредвиденных последствий, если «модифицированный объект» (например, животное) сбежит из лаборатории. Поиск решений таких задач (когда нужно получить лишь пользу с минимальными рисками) станет драйвером для развития BioTech-индустрии.

Многие будущие биотехнологические продукты будут похожи на существующие, но созданы с помощью новых подходов. Отчасти за счет этого они смогут появляться быстрее — по крайней мере, это уже актуально для новых форм генетической трансформации. Методика CRISPR/Cas9 позволяет сократить время ДНК-исследований, а благодаря последней разработке в этом направлении, фоточувствительной химической модификации направляющей РНК, она стала быстрее в 100 раз, как пишет журнал Science. Увеличение скорости и эффективности вышеупомянутых циклов Design-Build-Test-Learn вместе с увеличением числа специалистов в биотехнологической отрасли приведет к появлению большего количества продуктов, аналогичных ранним разработкам, но трансформирующихся с помощью процессов, отличных от рекомбинантной ДНК.

зачем нужны биотехнологии в современном мире. 755977369001464. зачем нужны биотехнологии в современном мире фото. зачем нужны биотехнологии в современном мире-755977369001464. картинка зачем нужны биотехнологии в современном мире. картинка 755977369001464.

Впрочем, некоторые будущие биотехнологические продукты могут полностью отличаться от существующих. Растущие возможности преобразования геномов сегодня позволяют разработчикам расширять число и виды модификаций. Мы можем увидеть генетическую трансформацию микробов (таких как дрожжи, водоросли и бактерии) в замкнутых системах для производства химикатов и биотоплива. А также развитие сообществ микробов из синтетической ДНК — они могут быть предназначены для высвобождения в открытых средах для усиления азотфиксации растениями или для использования в биоремедиации на загрязненных участках.

Помимо этого будут появляться новые BioTech-платформы, способствующие увеличению объемов и скорости производства биотехнологической продукции. Речь идет в первую очередь про вычислительные инструменты для повышения эффективности, новые наборы инструментов для потенциальных разработчиков, улучшенные возможности синтеза ДНК и РНК и более автоматизированные системы. В России уже несколько лет существует платформа «БиоТех2030» для построения отечественной биоэкономики, осуществления научно-технической и инновационной политики.

Источник

Биотехнологии. Что? Зачем? И почему?

18-12-2016, 11:16 | Наука и техника / Новости науки и техники | разместил: Редакция ОКО ПЛАНЕТЫ | комментариев: (0) | просмотров: (2 204)зачем нужны биотехнологии в современном мире. spacer. зачем нужны биотехнологии в современном мире фото. зачем нужны биотехнологии в современном мире-spacer. картинка зачем нужны биотехнологии в современном мире. картинка spacer.зачем нужны биотехнологии в современном мире. spacer. зачем нужны биотехнологии в современном мире фото. зачем нужны биотехнологии в современном мире-spacer. картинка зачем нужны биотехнологии в современном мире. картинка spacer.

Биотехнологии. Что? Зачем? И почему?

зачем нужны биотехнологии в современном мире. 978abbd4073ee8c444ffb943749b4ba8 S. зачем нужны биотехнологии в современном мире фото. зачем нужны биотехнологии в современном мире-978abbd4073ee8c444ffb943749b4ba8 S. картинка зачем нужны биотехнологии в современном мире. картинка 978abbd4073ee8c444ffb943749b4ba8 S.

Имеете ли вы представление, что такое биотехнологии?

Безусловно, вы, что то о них слышали. Это инновационное направление в современной биологии, которое стоит в одном ряду с такими науками как математика или физика.

Биотехнология занимается созданием нужных человеку продуктов и материалов с помощью живых культур и микроорганизмов таких как, дрожи, споры грибов, культивируемые клетки растений и животных и др. Конструирование нужных генов методами генной и клеточной инженерии позволяет управлять наследственностью и жизнедеятельностью животных, растений и микроорганизмов и создавать организмы с новыми полезными для человека свойствами, ранее не наблюдавшимися в природе. Биоинженеры, имеют дело с живыми системами природы, используют их возможности для решения медицинских задач, генной инженерии, сельского хозяйства, химической отрасли, косметической индустрии и пищевой промышленности. Биотехнология – это наука на стыке смежных отраслей.

Интересно, что проникновение биотехнологий в экономику мирового хозяйства отражается в том, что сформировались новые термины для обозначения глобальности данного процесса. В промышлености даже появились разноцветные биотехнологии:

Появились и новые профессии: биофармаколог, бионик, архитектор живых систем, урбанист-эколог и другие. Ну а экономика, объединяющая все эти инновационные области, стала назваться «биоэкономика».

Сегодня наша страна по уровню производства на основе высоких биотехнологий отстаёт от стран, являющихся технологическими лидерами в этой области. Политика нашего государства по импортозамещению направлена как раз на то, чтобы не только создавать новые биотехнологии, но осуществлять к нам в страну трансфер зарубежных решений, уже получившие признание в мире.

Трансфер технологий сопровождается поиском самых новых и прогрессивных решений. Но есть один важный момент, помимо факта прогрессивности технологии сегодня, нужно уметь предсказывать ее перспективы для прогресса будущего.

Иногда для таких стратегических предсказаний трудятся целые научно- исследовательские институты, группы ученых и практиков. А иногда, перспективность и прорывной характер технологии способен предсказать всего один человек. Такой как Стив Джобс или Бил Гейц.

В сфере биотехнологий тоже имеются свои проницательные лидеры из сферы бизнеса. Один из них Яковлев Максим Николаевич, генеральный директор представительства биотехнологической корпорации Unhwa, Южная Корея, расположенного в городе Санкт – Петербурге.

Биотехнология, которой Максим Яковлев определил прорывное будущее в разных сегментах экономики находится в сфере культивирования растительных клеток, обладающих функциями «естественных природных биофабрик» по производству ценных ингредиентов из любых растений, в том числе и уникальных.

Эта перспективная биотехнология, по мнению бизнесмена, способна из одной выделенной клетки растения создавать натуральное питание прямо на борту космических кораблей, выращивать плоды овощей и фруктов с нужными характеристиками и размерами, создавать экосистем других планет и питание для человека в промышленных масштабах из любого растения без выращивания этого растений на живой земле.

Возможно такие перспективы биотехнологии еще трудно осознать и принять как возможное. Но все мы знаем, что есть люди способны видеть дальше масс, потому что, они сами уже живут в будущем и зовут нас за собой.

Источник

Что такое генная инженерия и зачем вмешиваться в природу организмов

зачем нужны биотехнологии в современном мире. 756305009784600. зачем нужны биотехнологии в современном мире фото. зачем нужны биотехнологии в современном мире-756305009784600. картинка зачем нужны биотехнологии в современном мире. картинка 756305009784600.

Содержание:

Генная инженерия — это современное направление биотехнологии, объединяющее знания, приемы и методики из целого блока смежных наук — генетики, биологии, химии, вирусологии и так далее — чтобы получить новые наследственные свойства организмов.

Перестройка генотипов происходит путем внесения изменений в ДНК (макромолекулу, обеспечивающую хранение, передачу из поколения в поколение и реализацию генетической программы развития и функционирования живых организмов) и РНК (одну из трех основных макромолекул, содержащихся в клетках всех живых организмов).

Если внести в растение, микроорганизм, организм животного или даже человека новые гены, можно наделить его новой желательной характеристикой, которой до этого он никогда не обладал. С этой целью сегодня генная инженерия используется во многих сферах. Например, на ее основе сформировалась отдельная отрасль фармацевтической промышленности, представляющая собой одну из современных ветвей биотехнологии.

зачем нужны биотехнологии в современном мире. 756215094064926. зачем нужны биотехнологии в современном мире фото. зачем нужны биотехнологии в современном мире-756215094064926. картинка зачем нужны биотехнологии в современном мире. картинка 756215094064926.

История развития

Истоки

Основы классической генетики были заложены в середине XIX века благодаря экспериментам чешского-австрийского биолога Грегора Менделя. Открытые им на примере растений принципы передачи наследственных признаков от родительских организмов к их потомкам в 1865 году, к сожалению, не получили должного внимания у современников, и только в 1900 году Хуго де Фриз и другие европейские ученые независимо друг от друга «переоткрыли» законы наследственности.

Параллельно с этим шел процесс формирования знаний о ДНК. Так, в 1869 году швейцарский биолог Фридрих Мишер открыл факт существования макромолекулы, а в 1910 году американский биолог Томас Хант Морган обнаружил на основе характера наследования мутаций у дрозофил, что гены расположены линейно на хромосомах и образуют группы сцепления. В 1953 году было сделано важнейшее открытие — американец Джон Уотсон и британец Фрэнсис Крик установили молекулярную структуру ДНК.

На подъеме

К концу 1960-х годов генетика активно развивалась, а ее важными объектами стали вирусы и плазмиды. Были разработаны методы выделения высокоочищенных препаратов неповрежденных молекул ДНК, плазмид и вирусов, а в 1970-х годах был открыт ряд ферментов, катализирующих реакции превращения ДНК.

Генная инженерия как отдельное направление исследовательской работы зародилась в США в 1972 году, когда в Стэнфордском университете ученые Пол Берг, Стэнли Норман Коэн, Герберт Бойер и их научная группа внедрили новый ген в бактерию кишечной палочки (E. coli), то есть создали первую рекомбинантную ДНК.

Техника ПЦР была впервые разработана в 1980-х годах американским биохимиком Кэри Маллисом. Будущий лауреат Нобелевской премии по химии (1993 года), обнаружил в специфический фермент — ДНК-полимеразу, который участвует в репликации ДНК. Этот фермент буквально считывает отрезки цепи нуклеотидов молекулы и использует их в качестве шаблона для последующего копирования генетической информации.

Новая эра

В 1996 году методом пересадки ядра соматической клетки в цитоплазму яйцеклетки на свет появилось первое клонированное млекопитающее — овца Долли. Это событие стало революционным в истории развития генной инженерии, потому что впервые стало возможным серьезно говорить о создании клонов и выращивании живых организмов на основе молекул.

Технологии генной инженерии

Генная инженерия за короткий срок оказала огромное влияние на развитие различных молекулярно-генетических методов и позволила существенно продвинуться на пути познания генетического аппарата.

Так, появилась технология CRISPR — инструмент редактирования генома. В 2014 году MIT Technology Review назвал его «самым большим биотехнологическим открытием века». Он основан на защитной системе бактерий, которые производят специальные ферменты, позволяющие им защищаться от вирусов.

«Каждый раз, когда бактерия убивает вирус, она разрезает остатки его генома, будь то ДНК или РНК, и сохраняет их внутри последовательности CRISPR, как в архив. Как только вирус атакует снова, бактерия использует информацию из «архива» и быстро производит защитные белки Cas9, в которых заключены фрагменты генома вируса. Если вдруг эти фрагменты совпадают с генетическим материалом нынешнего атакующего вируса, Cas9 как ножницами разрезает захватчика, и бактерия снова в безопасности», — поясняет Алевтина Федина, медицинский директор Checkme.

Уникальное открытие состоялось в 2011 году, когда биологи Дженнифер Дудна и Эммануэль Шарпантье обнаружили, что белок Cas9 можно обмануть. Если дать ему искусственную РНК, синтезированную в лаборатории, то он, найдя в «архиве» соответствие, нападет на нее. Таким образом, с помощью этого белка можно резать геном в нужном месте — и не просто резать, а еще и заменять другими генами.

зачем нужны биотехнологии в современном мире. 756030964390915. зачем нужны биотехнологии в современном мире фото. зачем нужны биотехнологии в современном мире-756030964390915. картинка зачем нужны биотехнологии в современном мире. картинка 756030964390915.

Теоретически, технология CRISPR может позволить редактировать любую генетическую мутацию и излечивать заболевание, которое она вызывает. Но практические разработки CRISPR в качестве терапии еще только в начальной стадии, и многое еще непонятно.

Есть и другие методы генной инженерии, например, ZFN и TALEN.

Где и как применяется генная инженерия

Медицина

Уже сейчас активно применяется инсулин человека (хумулин), полученный посредством рекомбинантных ДНК. Клонированные гены человеческого инсулина были введены в бактериальную клетку, где начался синтез гормона, который природные микробные штаммы никогда не синтезировали. С 1982 года компании США, Японии, Великобритании и других стран производят генно-инженерный инсулин.

Кроме того, несколько сотен новых диагностических препаратов уже введены в медицинскую практику. Среди лекарств, находящихся в стадии клинического изучения, препараты, потенциально лечащие артрозы, сердечно-сосудистые заболевания, онкологию и СПИД. Среди нескольких сотен генно-инженерных компаний 60% заняты именно разработкой и производством лекарственных и диагностических средств.

«В медицине среди достижений генной инженерии сегодня можно выделить терапию рака, а также другие фармакологические новинки — исследования стволовых клеток, новые антибиотики, прицельно бьющие по бактериям, лечение сахарного диабета. Правда, пока все это на стадии исследований, но результаты многообещающие», — говорит Алевтина Федина.

Сельское хозяйство

В сельском хозяйстве одна из важнейших задач генной инженерии — получение растений и животных, устойчивых к вирусам. В настоящее время уже есть виды, способные противостоять воздействию более десятка различных вирусных инфекций.

Еще одна задача связана с защитой растений от насекомых-вредителей. Путем генетической модификации растений можно уменьшить интенсивность обработки полей пестицидами. Например, трансгенные растения картофеля и томатов стали устойчивы к колорадскому жуку, растения хлопчатника — к разным насекомым, в том числе и к хлопковой совке.

Использование генной инженерии позволило сократить применение инсектицидов (препаратов для уничтожения насекомых) на 40–60%.

Благодаря генной инженерии зерновые культуры стали более устойчивы к климатическим условиям, кроме того появилась возможность увеличить количество витаминов и полезных веществ в продукте. Например, можно обогатить рис витамином «А» и выращивать его в тех регионах, где люди имеют массовую нехватку этого элемента.

С помощью генной инженерии пытаются решить и экологические проблемы. Так, уже созданы особые сорта растений с функцией очистки почвы. Они поглощают цинк, никель, кобальт и иные опасные вещества из загрязненных промышленными отходами почв.

зачем нужны биотехнологии в современном мире. 756226602465369. зачем нужны биотехнологии в современном мире фото. зачем нужны биотехнологии в современном мире-756226602465369. картинка зачем нужны биотехнологии в современном мире. картинка 756226602465369.

Скотоводство

В Кемеровской области работа генетиков позволила получить устойчивое к вирусу лейкоза племенное поголовье высокопродуктивных животных. Для проведения эксперимента кузбасские ученые отобрали здоровых коров черно-пестрой породы массой до 500 кг. Животным трансплантировали модифицированные эмбрионы, устойчивые к вирусу лейкоза. В середине сентября 2020 года родилось 19 телят с измененными генами.

«В месячном возрасте была проведена оценка, которая показала, что телята отличаются от своих сверстников только устойчивостью к вирусу. Пять особей отобрали для дальнейшей селекционной работы. Это позволит закрепить наследственные признаки устойчивости к вирусу лейкоза у последующих поколений», — пояснила руководитель проекта, доктор биологических наук, профессор кафедры зоотехнии Кузбасской ГСХА Татьяна Зубова.

По словам Зубовой, лейкоз крупного рогатого скота — вирусная хронически неизлечимая болезнь, при которой возникают поражение кроветворной системы и новообразования. Данное заболевание наносит значительный ущерб генофонду пород и мясной промышленности в целом, потому что мясо зараженных животных запрещено употреблять в пищу. Единственным доступным методом борьбы с лейкозом ранее было только уничтожение зараженного скота.

Этот успех позволяет говорить о том, что в дальнейшем будет возможно редактировать гены крупного рогатого скота и от других болезней.

С прицелом на человека

В 2009 году группа ученых под руководством молодого исследователя Джея Нейтца из Вашингтонского университета сумели с помощью генной терапии вернуть обезьянам способность различать оттенки зеленого и красного, которой они были лишены от рождения.

В область сетчатки глаза двух подопытных обезьян был введен безвредный вирус, несущий недостающий ген фоточувствительного рецептора. Вскоре после процедуры обе обезьяны начали различать оттенки красного и зеленого на сером фоне. Два года наблюдения не выявили у них каких-либо нарушений, поэтому ученые не исключают, что данную методику уже вскоре можно будет применять у людей, страдающих дальтонизмом.

Ученые шагнули еще дальше и уже пробуют выращивать в теле животных органы для трансплантации людям. Для минимизации риска отторжения тканей животным вводят специальные гены. Этими опытами занимается научная лаборатория Рослинского института в Великобритании, которая представила миру овцу Долли.

В 2019 году британские ученые вывели кур, яйца которых содержат два вида человеческих белков, способных противодействовать артриту и некоторым видам онкологических заболеваний. В яйцах содержится человеческий белок под названием IFNalpha2a, обладающий мощными противовирусными и противораковыми свойствами, а также человеческий и свиной вариант белка под названием макрофаг-CSF, который планируют использовать для создания препарата, стимулирующего самостоятельное заживление поврежденных тканей.

зачем нужны биотехнологии в современном мире. 755887577825162. зачем нужны биотехнологии в современном мире фото. зачем нужны биотехнологии в современном мире-755887577825162. картинка зачем нужны биотехнологии в современном мире. картинка 755887577825162.

Изменение ДНК человека

Первые клинические испытания методов генной терапии были предприняты 22 мая 1989 года с целью генетического маркирования опухоль-инфильтрующих лимфоцитов в случае прогрессирующей меланомы.

14 сентября 1990 года в Бетесде (США) четырехлетней девочке, страдающей наследственным иммунодефицитом, обусловленным мутацией в гене аденозиндезаминазы (АDA), были пересажены ее собственные лимфоциты.

Работающая копия гена ADA была введена в клетки крови с помощью модифицированного вируса, в результате чего клетки получили возможность самостоятельно производить необходимый белок. Через шесть месяцев количество белых клеток в организме девочки поднялось до нормального уровня.

После этого область генной терапии получила толчок к дальнейшему развитию. С 1990-х годов сотни лабораторий ведут исследования по использованию генной терапии для лечения различных заболеваний. Уже сегодня с помощью генной терапии можно лечить диабет, анемию и некоторые виды онкологии.

Генная терапия

Генная терапия — введение, удаление или изменение генетического материала, в частности ДНК или РНК, в клетке пациента для лечения определенного заболевания.

Существует три основных стратегии использования генной терапии:

Наиболее часто применяемый метод включает вставку «терапевтического» гена для замены «ненормального» или «вызывающего болезнь».

В 2015 году впервые была проведена процедура изменения ДНК человека с целью продления молодости клеток, когда американке Элизабет Пэрриш 44 лет ввели в организм препарат, влияющий на ДНК, а в 2018 году китайский ученый Хэ Цзянькуй заявил, что с его помощью у двух детей-близнецов якобы изменены гены для выработки у них иммунитета к вирусу ВИЧ, носителем которого являлся их отец.

зачем нужны биотехнологии в современном мире. 755754686976614. зачем нужны биотехнологии в современном мире фото. зачем нужны биотехнологии в современном мире-755754686976614. картинка зачем нужны биотехнологии в современном мире. картинка 755754686976614.

Все это, с одной стороны, выглядит грандиозно и обнадеживает, но с другой, — вызывает опасения, ведь генетические манипуляции, теоретически, возможно использовать не только в благих и мирных целях.

После эксперимента с ДНК близнецов в Китае, ЮНЕСКО выступила с инициативой о запрете изменения генов у новорожденных до того момента, пока достоверно не будет доказана безопасность таких манипуляций.

Этическая сторона вопроса

В 1997 году ЮНЕСКО выпустила Всеобщую декларацию о геноме человека и его правах, рекомендовав мораторий на генетическое вмешательство в зародышевую линию человека, а в декабре 2015 года на международном саммите по геномному редактированию человека изменение гаметоцитов и эмбрионов для генерации наследственных изменений у людей было объявлено безответственным.

Российское сообщество генетиков в большинстве своем считает, что такие эксперименты на данный момент преждевременны и требуют более глубокого исследования и обсуждений.

«Вопрос клонирования уже давно стоит на горизонте. Этично ли выращивать клонов, чтобы потом забирать их органы для трансплантации человеку… Большой вопрос. Само собой, это абсолютно нормально, что нет единой точки зрения, ведь смысл подобных дискуссий как раз в том, чтобы найти правильные формулировки и отрегулировать потенциально спасительное, но при этом очень опасное знание», — говорит Алевтина Федина.

Страх неизвестности

Вариантов развития событий в области генной инженерии существует множество, и далеко не все они изучены и, в принципе, известны. Поэтому они должны быть последовательно зафиксированы и регламентированы.

Естественно, больше всего опасений вызывают плохие сценарии развития событий. Как правило, все начинается с помощи людям и изобретения новых лекарств. Но потом человек может прийти к желанию сделать своего ребенка светловолосым и зеленоглазым или создать армию универсальных солдат, не боящихся боли и не ведающих страха.

Олег Долгицкий, социальный философ, отмечает, что современное общество настолько неоднородно в культурном и экономическом плане, что любые методы, способные существенно изменить геном, могут создать условия не только для классового, но и видового расслоения, где представители «первого мира» смогут существенно продлевать свою жизнь и не бояться никаких болезней, в отличие от менее богатых людей. Это является серьезнейшей почвой для конфликтов и столкновений.

Эксперты убеждены, что генная инженерия — это будущее медицины. Возможность избавить младенца от пожизненного гнета заболевания, излечить людей от рака, найти лекарство против ВИЧ — за всем этим будет стоять генная инженерия. При этом желание человека изменить, например, цвет глаз или предотвратить наследственное заболевание, несмотря на все риски, будет только расти. И похоже, что остановить этот процесс уже не представляется возможным.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *