зачем нужен нулевой резистор
Для чего нужны резисторы с нулевым сопротивлением
Здравствуйте, уважаемые подписчики и гости моего канала. Если вы изучите современную плату какого-либо гаджета, то непременно обнаружите там такой необычный элемент, как резистор с нулевым сопротивлением. В этом материале я расскажу вам, для чего производители используют такой радиоэлемент в своих устройствах. Итак, поехали.
Что такое резистор с нулевым сопротивлением
Итак, резистор с нулевым сопротивлением – это пассивный радиоэлемент с минимально возможным сопротивлением. По своей сути это перемычка, упакованная в корпус обычного резистора. При этом бывает в нескольких исполнениях:
1. Проволочный резистор с почти нулевым сопротивлением. Отличается от обычных резисторов тем, что на его корпусе присутствует всего одна черная полоса, которая как раз и указывает на нулевое сопротивление элемента.
2. Резистор с нулевым сопротивлением для SMD монтажа. На таких элементах производитель печатает или один нуль, или три нуля.
Теперь давайте разберемся, какие функции выполняет резистор с нулевым сопротивлением.
Задачи резистора с нулевым сопротивлением
Итак, данные радиоэлементы выполняют следующие задачи:
· Предохранительная задача. В случае возникновения короткого замыкания данный резистор сгорает и, таким образом, сохраняет плату в рабочем состоянии.
· Функция перемычки. Такие элементы используются для соединения или разъединения разных частей платы. Кроме этого, такие элементы позволяют существенно удешевить производство электроники с различными модификациями. Так разработчики добавляют перемычку, чтобы в процессе сборки была возможность подключения дополнительных модулей или деталей.
· Упрощение и удешевление процесса сборки. Сейчас большую часть плат собирают роботы на конвейерах. И для того чтобы выполнять монтаж SMD элементов и простых перемычек, нужно использовать две разные машины. Для того чтобы унифицировать процесс и применять всего лишь одного робота с одной программой также упаковывают такие перемычки.
Вот такие функции у, казалось бы, простого и, на первый взгляд, бесполезного элемента как резистор с нулевым сопротивлением. Если вам понравился материал, то оцените его и не забудьте подписаться на канал. Спасибо за ваше внимание!
Есть ли польза от «проводов нулевого сопротивления»?
Изучаю обширную тему искрового зажигания автомобиля. Первая часть была посвящена коронному разряду на свечах (коричневый ободок) www.drive2.ru/l/514831202494973082/
Продолжая изучение дошел до вопроса сопротивления высоковольтных проводов и свечей зажигания и в частности вариант доработки – установка «проводов нулевого сопротивления».
Согласно мурзилке на мой автомобиль (взято отсюда elantra-club.ru/manuals/xd/html/7_8.htm) штатные высоковольтные провода на мою машину должны иметь сопротивление:
По факту провода, которые стояли на машине
Купленные на замену провода NGK RC-HD1206
По поводу проводов «нулевого сопротивления» во множестве мест пишут, что это очень полезно. Основной плюс, который приводят – то что искра становится более мощной и от этого двигатель во всех режимах работает лучше.
Начинаю разбираться. Эквивалентная схема высоковольтной части системы зажигания (для одной свечи) выглядит так
Осциллограмма напряжения на свече в режиме холостого хода (для примера) выглядит так
Из всего процесса искрового разряда в первую очередь рассмотрю наиболее энергонасыщенный участок «D». В связи с особенностью искрового разряда напряжение на этом участке практически постоянное. Значит всеми реактивными элементами в схеме можно пренебречь (они работают на переменном токе, на постоянном – не работают)
Тогда схема для участка «D» будет выглядеть так
Для понимания влияния сопротивления проводов (до кучи еще и сопротивления, встроенного в свечу зажигания) сделаю энергетический расчет
В варианте 1 использованы значения сопротивлений штатной системы зажигания: сопротивление катушки 12 кОм, сопротивление ВВ провода 9,5 кОм (для самого длинного провода), сопротивление свечи 5,5 кОм. Во втором варианте принято за НОЛЬ сопротивление свечи. В третьем варианте принято за НОЛЬ сопротивление ВВ провода. В четвертом варианте принято за НОЛЬ сопротивление и свечи и ВВ провода.
Из расчета видно, что при уменьшении сопротивления цепи возрастает мощность искры – в варианте 4 мощность искры в 2,25 раза выше чем в варианте 1. В варианте 2 и 3 мощность искры тоже увеличено по сравнению с вариантом 1. Это же ОЧЕНЬ ХОРОШО, правильно?
Правильно, но не совсем. Следует оценить, чем же пришлось заплатить за увеличенную мощность искры. Из того же расчета видно, что при уменьшении сопротивления цепи уменьшается длительность горения искры — в те же 2,25 раза что и рост мощности. В результате энергия искры не изменилась. А энергия, которая в штатном варианте выделялась на сопротивлении ВВ провода и свечи теперь выделяется на сопротивлении катушки зажигания. Значит катушка зажигания будет греться сильнее.
Наверное, с повышенным нагревом катушки можно смириться, ну греется катушка, ну и ладно…
В большинстве источников пишут, что сопротивление в проводах и свечах делают для подавления электромагнитных помех и только для этого. Правомерно ли это – не знаю, да и нечем мне проверить уровень помех. А вот на что еще влияет сопротивление в высоковольтной части системы зажигания?
Реальные процессы в двигателе как бы сказать… немного сложнее чем связка двух величин – мощность искры / мощность двигателя
Кстати, а для чего нужна высокая мощность искры?
Процесс поджига и сгорания топливной смеси в разных режимах работы двигателя выдвигает разные требования к искровому зажиганию
В режиме пуска двигателя наибольшее значение имеет именно мощность искры, причем мощность емкостной фазы – зона С на осциллограмме
В мощностных же режимах работы двигателя и на переходных режимах работы наибольшее значение имеет наибольшая длительность горения искры и выделяемая в этой фазе тепловая энергия. Связано это с тем что необходимо не только поджечь смесь, но и обеспечить ее быстрое и наиболее полное сгорание топлива.
А быстрое сгорание – это за какое время?
Идеальный вариант – топливная смесь полностью сгорает за время пока поршень находится вблизи ВМТ, например 20% от полного времени движения поршня от ВМТ к НМТ. Тогда наилучшая длительность горения составит
Уже на средних оборотах двигателя горения д.б. весьма быстрым – 2 мсек на 3 тыс. оборотов в минуту. А уж на повышенных оборотах время для наилучшего сгорания топливного заряда времени совсем мало – 1 мсек на 6 тыс. оборотов в минуту. К большому сожалению, добиться такой скорости сгорания в современных двигателях не удается, топливо горит практически всю длительность рабочего хода и даже после того как открылись выпускные клапана. А это снижает топливную эффективность и мощность двигателя (по сравнению с теоретическим максимумом).
Чтобы топливный заряд сгорал полнее желательно чтобы искра горела по возможности дольше. Тогда газы в камере сгорания при движении, в том числе через искровой промежуток свечи будут поджигаться эффективнее и сгорание станет более полным.
Отчасти именно поэтому штатные ВВ провода делают с сопротивлением. Величину сопротивления ВВ проводов и свечей зажигания подбирают такой чтобы обеспечить баланс между устойчивым запуском двигателя (необходима мощность искры) и наиболее эффективной работой двигателя в мощностных и переходных режимах (необходима энергия искры)
Кстати, а кто-нибудь обращал внимание что в исправном состоянии старый карбюраторный двигатель с контактной системой зажигания заводится быстрее чем современный инжекторный? Даже термин есть такой «завелся с пол-оборота» (имеется ввиду пол-оборота коленвала). Особенно это заметно в мороз, когда каждый оборот коленвала тяжело дается аккумулятору и стартеру.
Это легко объяснимо – для контактной системы зажигания достаточно чтобы ближайший кулачок в трамблере разомкнул контакт и искра полетит в нужный цилиндр. Для безтрамблерных же систем зажигания чтобы искра полетела в нужный цилиндр необходимо чтобы блок управления двигателя разобрался в каком положении находится коленвал и распредвал (или распредвалы). А для этого необходимо чтобы коленвал провернулся до датчика положения (максимально 1 оборот) и распредвал провернулся до датчика положения (максимально 2 оборота)
И в завершение еще немного текста
На что еще кроме уверенности запуска, мощности и экономичности влияет сопротивление ВВ проводов и свечей зажигания?
Рассмотрю такой параметр как ресурс свечи зажигания. Руководства по эксплуатации автомобилей для обычных никелевых свечей в среднем рекомендуют менять свечи каждые 30 тыс. км. На форумах во множестве встречаются записи начиная от «свечи сдохли через 10 тыс. км» и до «проехал на свечах 50 тыс. км и все нормально». Почему же такой разброс?
Что такое износ свечи, как он выглядит и от чего зависит?
Вот свеча с пробегом 1 тыс. км
А вот свеча с пробегом 60 тыс. км (за это время дважды был подогнут боковой электрод чтобы компенсировать увеличившийся зазор)
Из этих фото видно, что износ свечи проявляется в обгорании электродов и увеличении зазора между электродами. При этом у электродов в первую очередь обгорают острые кромки – электроды скругляются.
Износ электродов свечи в первую очередь определяется искровой эрозией, т.е. зависит от количества искр, сформированных свечой. Если задаться средними значениями: интервал замены свечей 30 тыс. км. и средняя скорость движения 60 км/час, то получится что пробегу 30 тыс. км. соответствует наработка двигателя 500 часов, что подтверждается средними данными из открытых источников. Если задаться что средние обороты двигателя составляют 2,5 тыс. в минуту, то получится что за 500 часов (30 тыс. минут) двигатель сделает 75 млн. оборотов. В таких средних условиях для систем с индивидуальными катушками свеча будет искрить 37,5 млн. раз, для систем DIS (одна катушка на две свечи) – 75 млн. раз. Если в ходе эксплуатации реальные условия отличаются от средних, то ресурс может как увеличиваться, так и уменьшаться.
Кроме электрической эрозии на износ свечи влияет химическая коррозия электродов, которая зависит от химического состава (а точнее от агрессивности химических соединений) газов в среде которых находится свеча, т.е. в конечном итоге от количества и состава веществ которые сгорают в цилиндре. Так повышенный расход масла на угар (если он есть) снижает ресурс свечей – электроды выгорают быстрее. Да и состав бензина может отличаться кардинально.
Кстати, автомобильный бензин – это не очень то легко воспламеняемая жидкость. Для проверки достаточно заправить бензиновую зажигалку автомобильным бензином. В таких условиях, например, зажигалки Zippo которые славятся как раз надежностью поджига начинают загораться не с первого раза.
Третий из важнейших параметров, которые влияют на ресурс свечей – величина токов которые проходят через них при разрядах. Чем больше ток, тем больше износ. И тут опять хочется вернуться к приведенному выше расчету
При уменьшении сопротивления ВВ проводов и свечей ток через свечу увеличивается в 2 с лишним раза, а значит в первом приближении ресурс свечи уменьшится примерно в те же 2 раза.
Тут нужно оговориться что миллиамперные токи которые протекают через свечу в индуктивной фазе разряда (зона D на осциллограмме) не жгут электроды, искровая эрозия электродов в первую очередь вызвана бросками токов в десяток ампер при пробое искрового зазора в емкостной фазе разряда (зона С на осциллограмме).
Таким образом, использование проводов нулевого сопротивления улучшает условия искрообразования в режиме пуска двигателя, ухудшает тепловой режим работы катушки зажигания, в общем случае ухудшает полноту сгорания топлива и уменьшает ресурс свечей зажигания
Для себя я выбрал провода NGK RC-HD1206 и пока что очень доволен как на них работает двигатель. Морозов под 40 градусов у нас можно сказать не бывает, а если случится, то я наверное никуда не поеду. А вот тяговитость и экономичность двигателя, а так же ресурс работы для меня имеют определяющее значение
В следующей части про систему зажигания планирую написать про выбор типа свечей и «тонкости» их замены
Для чего нужен резистор Zero Ohm & MiliOhm?
Я новичок в дизайне печатных плат и заметил, что в некоторых схемах используются резисторы 0 или 100 мОм. Какова их цель и почему мы должны использовать их при разработке наших печатных плат?
Обычно, если мы хотим проверить, какой ток принимает нагрузка, мы помещаем перемычку на дорожку печатной платы (затем измеряем ток на выводе с помощью мультиметра). Похоже, что добавление резисторов для этой цели приведет к расточительству большого количества печатных плат. Это единственная причина, по которой резисторы 100 мОм устанавливаются (так как I = V / 0,1 Ом) вместо перемычки?
Если это так, следует ли нам принимать во внимание размещение такого резистора мОм на плате, чтобы он не влиял на сигнал или поведение цепи?
«Резисторы» с нулевым сопротивлением часто используются в качестве звеньев на односторонних платах, потому что они могут быть установлены машинами для вставки компонентов, которые могут вставлять резисторы.
Производители односторонних печатных плат большого объема часто используют отдельную машину для вставки звеньев, пугающе быструю скорость которой нужно видеть, чтобы в нее верили.
При использовании резисторов для измерения тока в целях измерения.
В худшем случае падение напряжения на них должно быть небольшим по сравнению с общим напряжением цепи, чтобы они не влияли на работу. Например, если цепь потребляет 1 А и питается 5 В, то сопротивление 1 Ом будет падать на 1 Вольт. Это составляет 20% от общего напряжения цепи и будет чрезмерным практически во всех реальных ситуациях.
Резистор 0,1 Ом будет падать на 0,1 В при 1 А = 2% от источника питания и МОЖЕТ быть приемлемым в зависимости от цепи.
Резистор 0,01 Ом будет падать на 0,01 В при 1 А = 0,2% и будет почти всегда приемлемым.
Резистор 0,1 Ом будет падать на 100 мВ на ампер, поэтому 1 мА будет давать 100 мкВ.
Многие недорогие цифровые мультиметры имеют диапазон 200 мВ с разрешением ( но не точностью ) 0,1 мВ = 100 мкВ, поэтому они могут считывать ток с резистора 0,1 Ом до разрешения 1 мА . Точно так же они могут считывать ток в резисторе 0,01 Ом с разрешением 10 мА.
Размещение сенсорных резисторов с заземленной одной стороной позволяет проводить измерения с привязкой к земле, что может быть удобным. Падение напряжения не должно влиять на работу цепи.
Там, где присутствует высокочастотный шум, используйте цифровой мультиметр или другой измеритель для измерения напряжения с целью вычисления тока, что приведет к плохим результатам из-за шума, поступающего в измеритель. В таком случае используйте, например, сенсорный резистор 0,1 Ом, подайте напряжение через последовательный резистор 1k на счетчик и добавьте, скажем, 10 мкФ на клеммы счетчика.