зачем клетка перед делением удваивает хромосомы

Процессы жизнедеятельности растительной клетки

Вопрос 1. Как можно наблюдать движение цитоплазмы?
Движение цитоплазмы можно увидеть в клетках листа элодеи под микроскопом. Пластиды (хлоропласты) плавно перемещаются вместе с цитоплазмой в одном направлении вдоль клеточной оболочки. По их перемещению можно судить о движении цитоплазмы.

Вопрос 2. Какое значение для растений имеет движение цитоплазмы в клетках?
Движение цитоплазмы способствует перемещению в клетках ферментов, питательных веществ и воздуха. Чем активнее жизнедеятельность клетки, тем больше скорость движения ее цитоплазмы.

Вопрос 3. Из чего состоят все органы растения?
Все органы растения состоят из тканей, в свою очередь, ткани состоят из клеток.

Вопрос 4. Почему не разъединяются клетки, из которых состоит растение?
Между оболочками соседних клеток находится особое межклеточное вещество, которое не дает клеткам разъединиться. Клетки разъединяются, если межклеточное вещество разрушается.

Вопрос 5. Как поступают вещества в живую клетку?
Вещества, необходимые для жизнедеятельности клеток, поступают в них через клеточную оболочку в виде растворов из других клеток, межклетников, окружающей среды. Оболочка живой клетки проницаема для одних веществ и непроницаема для других. Это свойство полупроницаемости оболочка сохранит, пока клетка жива.
Плазмодесмы – это такой тип контакта, который встречается у растений. Клеточная стенка образует жесткий каркас, который затрудняет связь между клетками. Плазмодесмы – тонкие трубочки, которые проходят через клеточную стенку, таким образом, цитоплазма соседних клеток соединяется, осуществляя межклеточную циркуляцию растворов с питательными веществами, ионами и другими соединениями. Таким образом, может даже происходить и заражение растений клеточными вирусами.

Вопрос 7. Чем объясняется рост органов растения?
Органы растения растут в результате деления и роста клеток.

Вопрос 8. В какой части клетки находятся хромосомы?
Хромосомы находятся в ядре клетки.

Вопрос 9. Какую роль играют хромосомы?
В хромосомах содержится ДНК, в молекуле которой записана наследственная информация. Клетки каждого организма содержат определённое число хромосом. При делении клетки хромосомы передают наследственные признаки от родительской клетки к дочерней.

Вопрос 1О. Почему клетки имеют постоянное число хромосом?
Клетки имеют постоянное число хромосом, потому что перед ее делением каждая хромосома удваивается (строит себе копию). Хромосомы-близнецы по одной из каждой пары расходятся к полюсам материнской клетки. Затем клетка делится на две части, и в результате обе дочерние клетки имеют вновь первоначальное число хромосом.
Таким образом, В результате деления клетки (митоза) из одной материнской клетки образуется две дочерние клетки с таким же набором хромосом, как и материнская клетка.

Вопрос 11. Чем отличается молодая клетка от старой?
Молодые клетки содержат много мелких вакуолей. Ядро молодой клетки располагается в центре. В старой клетке обычно имеется одна большая вакуоль, поэтому цитоплазма, в которой находится ядро, прилегает к клеточной оболочке. Молодые клетки, н отличие от старых, способны делиться.

Источник

На пути к разгадке тайны мейоза

зачем клетка перед делением удваивает хромосомы. bogdanov 0. зачем клетка перед делением удваивает хромосомы фото. зачем клетка перед делением удваивает хромосомы-bogdanov 0. картинка зачем клетка перед делением удваивает хромосомы. картинка bogdanov 0.

Появление мейоза – особого варианта клеточного деления, в результате которого число хромосом сокращается вдвое – было одним из важнейших эволюционных «достижений» первых эукариот. Механизм мейоза сложился из комбинации готовых «блоков»: механизмов митоза, рекомбинации и репарации ДНК. Ключевым событием стало формирование синаптонемного комплекса – особой белковой структуры, обеспечивающей попарное соединение и точное «выравнивание» хромосом.

Появление эукариотической клетки было важнейшим эволюционным преобразованием (ароморфозом) в истории земной жизни (см. обзор «Происхождение эукариот» ). Одним из главных «достижений» древних эукариотических организмов стало возникновение настоящего полового процесса, то есть слияния двух гаплоидных (содержащих одинарный набор хромосом) клеток – гамет в диплоидную (содержащую двойной набор хромосом) клетку – зиготу.

Чтобы жизненный цикл эукариот, обладающих половым процессом, мог продолжаться, должен был развиться механизм, посредством которого из диплоидных клеток снова могли образовываться гаплоидные. Таким механизмом стал мейоз – особый вид клеточного деления, при котором число хромосом в дочерних клетках уменьшается вдвое по сравнению с родительской клеткой.

В статье Ю.Ф.Богданова, крупнейшего специалиста по эволюции мейоза, рассматриваются современные представления о происхождении механизмов мейотического деления у эукариот.

Общепризнано, что мейоз произошел из митоза – «обычного» клеточного деления эукариот, в результате которого число хромосом остается прежним. Происхождение митоза само по себе было замечательным ароморфозом. Мейоз, по сути дела, является модифицированной версией митоза.

зачем клетка перед делением удваивает хромосомы. bogdanov 1. зачем клетка перед делением удваивает хромосомы фото. зачем клетка перед делением удваивает хромосомы-bogdanov 1. картинка зачем клетка перед делением удваивает хромосомы. картинка bogdanov 1.

В ходе митоза (а также в ходе второго деления мейоза) хромосомы вступают в метафазу поодиночке, и нити веретена деления присоединяются к каждой хромосоме с двух сторон.

Именно благодаря указанным особенностям первого деления мейоза и обеспечивается уменьшение числа хромосом: к полюсам клетки расходятся не сестринские хроматиды, а гомологичные хромосомы, по одной из каждой пары (см. схему).

Эти ключевые особенности первого деления мейоза развились на основе одного и того же ароморфоза – возникновения так называемого синаптонемного комплекса (СК).

Механизм мейоза был «собран» из готовых блоков (как это часто бывает в эволюции) – разумеется, с некоторыми модификациями и новшествами.

Одним из этих исходных блоков стал уже имевшийся к тому времени у эукариот механизм митоза, другим – механизм репарации (починки повреждений) ДНК, основанный на гомологичной рекомбинации (см.: Глазер В.М. Гомологичная генетическая рекомбинация ). Суть процесса в том, что поврежденный участок одной молекулы ДНК заменяется его неповрежденной копией, взятой из другой (гомологичной) молекулы ДНК.

Чтобы «развести» гомологичные хромосомы к разным полюсам клетки, в ходе мейоза используется веретено деления, «унаследованное» от митоза. Но чтобы распределение хромосом по дочерним клеткам прошло без ошибок, гомологичные хромосомы необходимо сначала сгруппировать попарно. Для этого используется механизм гомологичной рекомбинации, точнее, одна из деталей этого механизма – образование так называемого соединения Холлидея.

зачем клетка перед делением удваивает хромосомы. bogdanov 2. зачем клетка перед делением удваивает хромосомы фото. зачем клетка перед делением удваивает хромосомы-bogdanov 2. картинка зачем клетка перед делением удваивает хромосомы. картинка bogdanov 2.

Починка разрывов ДНК – одна из основ мейоза

Механизмы репарации и рекомбинации ДНК – очень древние, они должны были возникнуть еще на заре жизни.

Становление мейоза в ходе эволюции, так же как и сам мейоз в жизненном цикле современных организмов, начинается с репарации повреждений (разрывов) ДНК. Разрывы эти в начале мейоза возникают не сами собой – их создает специальный фермент, эндонуклеаза SPO11. Этот фермент является модификацией другого белка – ДНК-топоизомеразы VI, унаследованной эукариотами от своих прокариотических предков – архей.

Клетка начинает «чинить» разорванные молекулы ДНК при помощи древнего механизма гомологичной рекомбинации. А для этого нужно объединить попарно гомологичные молекулы ДНК (чтобы использовать неповрежденные участки одной молекулы в качестве «матрицы» для исправления повреждений в другой молекуле). На этом и основано попарное объединение хромосом в профазе I мейоза.

Белковые оси хромосом

Эукариотический геном значительно больше прокариотического и содержит больше «избыточной» ДНК (различных некодирующих последовательностей, мобильных генетических элементов и др.) Большие размеры генома стимулировали «распадение» его на отдельные хромосомы (линейные, в отличие от единственной кольцевой хромосомы прокариот). Как следствие, «оказалась полезной новация в структуре хромосом – белковые оси, к которым стали крепиться петли гигантской молекулы ДНК – эукариотической хромосомы».

В клетках эукариот, делящихся путем митоза, сестринские хроматиды (образовавшиеся в результате репликации исходной молекулы ДНК) соединены посредством белков-когезинов. Чтобы хроматиды могли разойтись к полюсам клетки (в анафазе митоза), когезины должны гидролизоваться и исчезнуть из межхроматидного пространства.

Один из когезинов (Rec8) «оказался подходящим субстратом для наслоения на него других мейоз-специфичных белков», из которых в начале мейоза строятся более сложные белковые оси, или «линейные элементы», к которым ДНК крепится петлями, приобретая вид «ершика». Каждая петля содержит несколько тысяч пар нуклеотидов и крепится к линейному элементу только в одном месте, «кнопочно». Такая организация хромосомы позволяет хромосомным локусам легче находить гомологичные им локусы в хромосоме-партнере. Так обстоит дело у некоторых низших эукариот, у которых нет «классического» мейоза, характерного для более высокоорганизованных форм.

Синаптонемные комплексы. Ароморфоз.

У эукариот с классическим мейозом «бывшие линейные элементы хромосом соединяются попарно с помощью белковой «застежки-молнии» в двухосевую структуру, именуемую синаптонемным комплексом (СК)». Это обеспечивает тесное соединение гомологичных хромосом. Ю.Ф.Богданов считает появление СК важным ароморфозом. СК существует ограниченное время в течение профазы I мейоза и затем распадается. СК обнаружен у многих сотен видов – от одноклеточных водорослей, грибов и протистов до многоклеточных. Предполагается несколько возможных функций СК:

1) Организация профазной мейотической хромосомы. Благодаря СК возникает билатеральная организация пары соединившихся гомологичных хромосом. Петли хроматина располагаются по обе стороны от СК. Это позволяет точно сопоставить петли хроматина в трехмерном пространстве клеточного ядра. «По-видимому, это простейший, если не единственный, способ внести порядок и точность в процесс взаимного узнавания локусов гомологичных хромосом и обеспечить достаточную точность (гомологию) рекомбинации в мейозе.»

2) СК не только соединяет гомологичные хромосомы, но и не дает им «склеиться», удерживая их на расстоянии 70-120 нм друг от друга. В конце профазы I (стадия диплотены) СК распадается во всех локусах, кроме локусов хиазм (перекрещивания хроматид). Гомологичные хромосомы, взаимно оттолкнувшиеся во всех локусах, кроме локусов хиазм, выстраиваются на экваторе веретена деления в метафазе I. Они готовы разойтись к полюсам, как только освободятся от хиазм.

3) СК необходим для формирования хиазм. СК также не позволяет хиазмам располагаться слишком близко друг от друга. Иными словами, благодаря СК хроматиды могут «рваться» и обмениваться участками лишь в ограниченном количестве мест. Ю.Ф.Богданов оценивает это как положительное явление, поскольку «чрезмерная частота кроссинговера – не столько «благо» комбинаторики, сколько угроза стабильности адаптационно выгодных фенотипов».

Происхождение белков СК

У разных групп эукариот СК строится по единому «плану», но при этом используются совершенно разные (структурно негомологичные) белки. Это похоже на постройку домов по сходному плану (стены, крыша, окна), но из совершенно разных материалов. Материал не важен – «важно, чтобы СК выравнивал параллельно лежащие гомологичные хромосомы, сохранял между ними пространство, в котором происходит рекомбинация ДНК, и сохранял бы эти условия столь долго, сколько необходимо для завершения рекомбинации и формирования хиазм».

зачем клетка перед делением удваивает хромосомы. bogdanov 3 s. зачем клетка перед делением удваивает хромосомы фото. зачем клетка перед делением удваивает хромосомы-bogdanov 3 s. картинка зачем клетка перед делением удваивает хромосомы. картинка bogdanov 3 s. зачем клетка перед делением удваивает хромосомы. zoomnw2. зачем клетка перед делением удваивает хромосомы фото. зачем клетка перед делением удваивает хромосомы-zoomnw2. картинка зачем клетка перед делением удваивает хромосомы. картинка zoomnw2.

Сравнительный анализ структуры белков СК показал, что они возникли независимо у предков современных эукариот, давших начало разным крупным таксонам (растений, грибов, животных).

Ю.Ф.Богданов приводит убедительные доводы и экспериментальные факты, свидетельствующие о том, что структуры СК формируются путем самосборки из белковых молекул, подобно многим другим сложным молекулярным комплексам. Автор отмечает, что «самоорганизующиеся структуры могут состоять из разных белковых субъединиц и нуклеиновых кислот, как это наблюдается в отношении вирусов и рибосом». Важно, что белки, сходные по размерам и трехмерной организации, могут служить компонентами одинаковых структур у далеких друг от друга организмов даже в тех случаях, когда первичная структура (аминокислотная последовательность) этих белков сильно различается.

Почему в первом делении мейоза сестринские хроматиды не расходятся?

Итак, причина нерасхождения хроматид в мейозе I – сохранение соединяющей их когезиновой оси. В результате после первого деления мейоза «программа» клеточного деления остается как бы «не выполненной». Эта программа – в основе которой лежит древняя программа митоза – после завершения мейоза I, не останавливаясь, продолжает работать (хроматиды не разошлись, когезиновые оси не гидролизовались – значит, нужно делиться дальше). И поэтому клетки сразу же, без интерфазы и без синтеза ДНК, вступают в новое деление (мейоз II), идущее уже в точности по схеме классического митоза.

В заключительнй части статьи Ю.Ф.Богданов рассматривает ряд интересных случаев отхода некоторых организмов от схемы «классического» мейоза. Например, у самцов дрозофил (в отличие от самок) СК не образуется, и мейоз идет по примитивной схеме, характерной для некоторых архаичных эукариот (дрожжи S. pombe ). Таким образом «генетическая программа» примитивного мейоза у высших организмов не исчезает (вероятно, она просто входит в состав более сложной программы «классического» мейоза) и может вновь оказаться востребованной.

Ю. Ф. Богданов. Белковые механизмы мейоза (популярная статья в журнале «Природа»).

С фактами и теориями, касающимися происхождения мейоза, можно ознакомиться в статьях Ю.Ф.Богданова и его коллег:

Источник

Движущая сила хромосом при делении клеток

зачем клетка перед делением удваивает хромосомы. ti1 medium. зачем клетка перед делением удваивает хромосомы фото. зачем клетка перед делением удваивает хромосомы-ti1 medium. картинка зачем клетка перед делением удваивает хромосомы. картинка ti1 medium.

Ученые из университета Массачусетса в Амхерсте (США), под руководством ассистента-профессора Томаса Марески (Thomas Maresca) измерили величину силы, двигающей хромосомы во время деления клеток. Статью об этом, опубликованную в журнале Nature Communications, пересказывает пресс-релиз университета.

Когда клетка делится, хромосомы выходят из ядра и выстраиваются в линию с помощью т. н. «веретена деления», состоящего из микротрубочек. Затем хромосомы удваиваются и впоследствии те же микротрубочки «растаскивают» их по разделившимся клеткам. Хромосомы крепятся к трубочкам с помощью специальных белков-кинетохоров. Понять механику этого процесса очень важно, ведь малейшая ошибка в расхождении хромосом при клеточном делении приводит к опасным нарушениям, которые могут вызвать рак. А если речь идет о половых клетках — то тяжелые наследственные заболевания.

Несмотря на это, до сих пор не было сколько-нибудь точных и достоверных оценок величины сил, которые двигают хромосомы во время этого процесса. Ранее выдвигавшиеся оценки отличались в сотни и тысячи раз, что, конечно, совершенно недопустимо в науке. Марески с коллегами, судя по всему, смогли решить эту проблему.

Для этого они в течение трех лет изучили под мощным микроскопом свыше 3 тыс. веретен деления. К кинетохорам в них исследователи прикрепляли флюоресцентные молекулы-индикаторы двух типов. Молекулы первого начинали светить ярче, когда к кинетохору прикладывалось давление, в то время, как молекулы второго типа, напротив, тускнели. Поскольку яркость каждого из типов молекул в нормальных условиях была тщательно откалибрована, сопоставление ее изменений позволяло достаточно точно вычислить величину искомой силы. Она оказалась порядка сотни пиконьютонов (пН) — в масштабах клетки это много.

Наблюдения дали и еще некоторые результаты. Во-первых, оказалось, что эта сила исходит именно от нанотрубок. Во-вторых, действует она медленно, но планомерно.

«В клетках есть много разных движущих сил, многие из них похожи на спринтеров. Но та, что измеряли мы — скорее как бульдозер: она прикладывает большую силу медленно, но на постоянной основе».

Источник

Митоз и мейоз

Жизненный цикл клетки (клеточный цикл)

С момента появления клетки и до ее смерти в результате апоптоза (программируемой клеточной гибели) непрерывно продолжается жизненный цикл клетки.

зачем клетка перед делением удваивает хромосомы. 1219. зачем клетка перед делением удваивает хромосомы фото. зачем клетка перед делением удваивает хромосомы-1219. картинка зачем клетка перед делением удваивает хромосомы. картинка 1219.

зачем клетка перед делением удваивает хромосомы. 1220. зачем клетка перед делением удваивает хромосомы фото. зачем клетка перед делением удваивает хромосомы-1220. картинка зачем клетка перед делением удваивает хромосомы. картинка 1220.

Интенсивно образуются рибосомы, синтезируется АТФ и все виды РНК, ферменты, клетка растет.

зачем клетка перед делением удваивает хромосомы. 1221. зачем клетка перед делением удваивает хромосомы фото. зачем клетка перед делением удваивает хромосомы-1221. картинка зачем клетка перед делением удваивает хромосомы. картинка 1221.

Митоз является непрямым способом деления клетки, наиболее распространенным среди эукариотических организмов. По продолжительности занимает около 1 часа. К митозу клетка готовится в период интерфазы путем синтеза белков, АТФ и удвоения молекулы ДНК в синтетическом периоде.

Митоз состоит из 4 фаз, которые мы далее детально рассмотрим: профаза, метафаза, анафаза, телофаза. Напомню, что клетка вступает в митоз с уже удвоенным (в синтетическом периоде) количеством ДНК. Мы рассмотрим митоз на примере клетки с набором хромосом и ДНК 2n4c.

зачем клетка перед делением удваивает хромосомы. 1222. зачем клетка перед делением удваивает хромосомы фото. зачем клетка перед делением удваивает хромосомы-1222. картинка зачем клетка перед делением удваивает хромосомы. картинка 1222.

ДНК максимально спирализована в хромосомы, которые располагаются на экваторе клетки. Каждая хромосома состоит из двух хроматид, соединенных центромерой (кинетохором). Нити веретена деления прикрепляются к центромерам хромосом (если точнее, прикрепляются к кинетохору центромеры).

зачем клетка перед делением удваивает хромосомы. 1223. зачем клетка перед делением удваивает хромосомы фото. зачем клетка перед делением удваивает хромосомы-1223. картинка зачем клетка перед делением удваивает хромосомы. картинка 1223.

зачем клетка перед делением удваивает хромосомы. 1224. зачем клетка перед делением удваивает хромосомы фото. зачем клетка перед делением удваивает хромосомы-1224. картинка зачем клетка перед делением удваивает хромосомы. картинка 1224.

зачем клетка перед делением удваивает хромосомы. 1225. зачем клетка перед делением удваивает хромосомы фото. зачем клетка перед делением удваивает хромосомы-1225. картинка зачем клетка перед делением удваивает хромосомы. картинка 1225.

Попробуйте самостоятельно вспомнить фазы митоза и описать события, которые в них происходят. Особенное внимание уделите состоянию хромосом, подчеркните сколько в них содержится молекул ДНК (хроматид).

зачем клетка перед делением удваивает хромосомы. 1226. зачем клетка перед делением удваивает хромосомы фото. зачем клетка перед делением удваивает хромосомы-1226. картинка зачем клетка перед делением удваивает хромосомы. картинка 1226.

Мейоз

В результате мейоза из диплоидных клеток (2n) получаются гаплоидные (n). Мейоз состоит из двух последовательных делений, между которыми практически отсутствует пауза. Удвоение ДНК перед мейозом происходит в синтетическом периоде интерфазы (как и при митозе).

зачем клетка перед делением удваивает хромосомы. 1227. зачем клетка перед делением удваивает хромосомы фото. зачем клетка перед делением удваивает хромосомы-1227. картинка зачем клетка перед делением удваивает хромосомы. картинка 1227.

Помимо типичных для профазы процессов (спирализация ДНК в хромосомы, разрушение ядерной оболочки, движение центриолей к полюсам клетки) в профазе мейоза I происходят два важнейших процесса: конъюгация и кроссинговер.

зачем клетка перед делением удваивает хромосомы. 1229. зачем клетка перед делением удваивает хромосомы фото. зачем клетка перед делением удваивает хромосомы-1229. картинка зачем клетка перед делением удваивает хромосомы. картинка 1229.

Кроссинговер является важнейшим процессом, в ходе которого возникают рекомбинации генов, что создает уникальный материал для эволюции, последующего естественного отбора. Кроссинговер приводит к генетическому разнообразию потомства.

зачем клетка перед делением удваивает хромосомы. 1228. зачем клетка перед делением удваивает хромосомы фото. зачем клетка перед делением удваивает хромосомы-1228. картинка зачем клетка перед делением удваивает хромосомы. картинка 1228.

Биваленты (комплексы из двух хромосом) выстраиваются по экватору клетки. Формируется веретено деления, нити которого крепятся к центромере (кинетохору) каждой хромосомы, составляющей бивалент.

зачем клетка перед делением удваивает хромосомы. 1230. зачем клетка перед делением удваивает хромосомы фото. зачем клетка перед делением удваивает хромосомы-1230. картинка зачем клетка перед делением удваивает хромосомы. картинка 1230.

зачем клетка перед делением удваивает хромосомы. 1231. зачем клетка перед делением удваивает хромосомы фото. зачем клетка перед делением удваивает хромосомы-1231. картинка зачем клетка перед делением удваивает хромосомы. картинка 1231.

зачем клетка перед делением удваивает хромосомы. 1233. зачем клетка перед делением удваивает хромосомы фото. зачем клетка перед делением удваивает хромосомы-1233. картинка зачем клетка перед делением удваивает хромосомы. картинка 1233.

Мейоз II весьма напоминает митоз по всем фазам, поэтому если вы что-то подзабыли: поищите в теме про митоз. Главное отличие мейоза II от мейоза I в том, что в анафазе мейоза II к полюсам клетки расходятся не хромосомы, а хроматиды (дочерние хромосомы).

зачем клетка перед делением удваивает хромосомы. 1232. зачем клетка перед делением удваивает хромосомы фото. зачем клетка перед делением удваивает хромосомы-1232. картинка зачем клетка перед делением удваивает хромосомы. картинка 1232.

Сейчас мы возьмем клетку, в которой 4 хромосомы. Попытайтесь самостоятельно описать фазы и этапы, через которые она пройдет в ходе мейоза. Проговорите и осмыслите набор хромосом в каждой фазе.

зачем клетка перед делением удваивает хромосомы. 1234. зачем клетка перед делением удваивает хромосомы фото. зачем клетка перед делением удваивает хромосомы-1234. картинка зачем клетка перед делением удваивает хромосомы. картинка 1234.

Бинарное деление надвое

зачем клетка перед делением удваивает хромосомы. 1235. зачем клетка перед делением удваивает хромосомы фото. зачем клетка перед делением удваивает хромосомы-1235. картинка зачем клетка перед делением удваивает хромосомы. картинка 1235.

При благоприятных условиях бактерии делятся каждые 20 минут. В случае, если условия не столь благоприятны, то больше времени уходит на рост и развитие, накопление питательных веществ. Интервалы между делениями становятся длиннее.

зачем клетка перед делением удваивает хромосомы. 1236. зачем клетка перед делением удваивает хромосомы фото. зачем клетка перед делением удваивает хромосомы-1236. картинка зачем клетка перед делением удваивает хромосомы. картинка 1236.

Амитоз встречается в раковых (опухолевых) клетках, воспалительно измененных, в старых клетках.

© Беллевич Юрий Сергеевич 2018-2021

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Источник

Мейоз в ЕГЭ по биологии: задания и теория

зачем клетка перед делением удваивает хромосомы. mikusheva min. зачем клетка перед делением удваивает хромосомы фото. зачем клетка перед делением удваивает хромосомы-mikusheva min. картинка зачем клетка перед делением удваивает хромосомы. картинка mikusheva min.

Людмила Микушева

Продолжаем разбираться с делением клетки! Эта тема не ограничивается митозом, о котором я рассказала в прошлый раз. В этой статье я расскажу про мейоз в ЕГЭ по биологии — второй, но не менее важный способ деления. Вас ждет необходимая теория и разбор нескольких заданий!

зачем клетка перед делением удваивает хромосомы. 460. зачем клетка перед делением удваивает хромосомы фото. зачем клетка перед делением удваивает хромосомы-460. картинка зачем клетка перед делением удваивает хромосомы. картинка 460.

Что такое мейоз?

Мейоз — это деление, при котором образуются половые клетки: яйцеклетки у самок и сперматозоиды у самцов. В мейоз вступают клетки с набором 2n2c, поэтому я предостерегаю вас от использования формулировки «деление половых клеток». Правильнее будет охарактеризовать его как деление, в результате которого образуются половые клетки. Чтобы решать задания на мейоз в ЕГЭ по биологии, нужно разобраться в его процессе и фазах — этим мы сейчас и займемся.

Напомню, что буквой n принято обозначать количество хромосом в клетке, а с – количество ДНК. Причем n и c – это количество наборов, а не штук. Например, в соматической клетке человека набор 2n2с – 46 хромосом, в каждой из которых по 1 молекуле ДНК (тоже 46), а в соматической клетке собаки 2n2c – 78 хромосом и 78 молекул ДНК.

Интерфаза

Как и в митозе, перед делением проходит подготовительная стадия – интерфаза. В ней запускаются важнейшие процессы для того, чтобы клетка могла начать клеточное деление. Клетка синтезирует органические вещества и молекулы АТФ, чтобы во время мейоза ей хватило энергии и строительного материала, удваивает некоторые органоиды и молекулы ДНК.

Вот что именно происходит во время интерфазы.

После того, как клетка совершит все ритуалы для подготовки, она может приступать к мейозу.

Если хотите лучше понять клеточную теорию и изучить не только мейоз для ЕГЭ по биологии, но и остальные темы, приходите учиться в MAXIMUM! Записывайтесь на консультацию — вы сможете пройти диагностику по выбранным предметам ЕГЭ, поставить цели и составить стратегию подготовки, чтобы получить на экзамене высокие баллы. Все это абсолютно бесплатно!

Первое деление

Чем мейоз функционально отличается от митоза? Дело в том, что в мейозе происходит не одно деление, а два. Их так и называют: первое и второе деление мейоза. В каждом делении по 4 фазы. Тут нам повезлоЕ называются эти фазы так же, как и фазы митоза, поэтому сложностей с ними обычно не возникает. Между делениями не проходит интерфаза, клетка может немного «отдохнуть», но удвоения ДНК не происходит.

Рассмотрим фазы каждого деления подробнее.

Профаза первого деления

Что же такое гомологичные хромосомы? Все мы знаем, что половину хромосом при оплодотворении получаем от материнского организма, а другую половину от отцовского. Так вот, гомологичные хромосомы сходны по строению, размеру и несут одинаковый набор генов (но, возможно, разные аллели). Одну из таких хромосом организм получает от матери, а вторую от отца. Такие хромосомы подходят близко друг к другу, это называется конъюгация, и могут даже обменяться участками – это кроссинговер.

зачем клетка перед делением удваивает хромосомы. image 2. зачем клетка перед делением удваивает хромосомы фото. зачем клетка перед делением удваивает хромосомы-image 2. картинка зачем клетка перед делением удваивает хромосомы. картинка image 2.

После этого хромосомы хаотично располагаются в цитоплазме. При этом набор хромосом и ДНК по сравнению с интерфазой не меняется (меняется только генетическая информация), а остается таким же, как в интерфазе – 2n4c.

Метафаза первого деления

Помните, что метафаза — самая статичная и красивая из всех фаз? Хромосомы выстраиваются по экватору гомологичными парами, друг напротив друга. Нити веретена деления прикрепляются к центромере хромосомы, которая расположена ближе к тому полюсу, где находится центриоль. Таким образом, каждую хромосому нить фиксирует только одной стороны. Набор остается 2n4c.

зачем клетка перед делением удваивает хромосомы. image 3. зачем клетка перед делением удваивает хромосомы фото. зачем клетка перед делением удваивает хромосомы-image 3. картинка зачем клетка перед делением удваивает хромосомы. картинка image 3.

Анафаза первого деления

Нити веретена деления сокращаются и растаскивают к полюсам по одной из пары гомологичных двухроматидных хромосом. Хромосомы расходятся к полюсам, а набор в клетке не меняется, так и остается 2n4c.

зачем клетка перед делением удваивает хромосомы. image 5. зачем клетка перед делением удваивает хромосомы фото. зачем клетка перед делением удваивает хромосомы-image 5. картинка зачем клетка перед делением удваивает хромосомы. картинка image 5.

Телофаза первого деления

Дальше клетка действует, как будто по инерции. Она продолжает работать по тому же алгоритму, что и в митозе. Поэтому в первой телофазе хромосомы деконденсируются, формируются ядра и ядерные оболочки, клетка делится на две, при этом набор в каждой из новых клеток тоже делится пополам и становится 1n2c. С этим набором клетка переходит во второе деление.

Второе деление

Хочу обратить ваше внимание на то, что дальше процессы деления будут проходить в двух получившихся клетках параллельно. Мы, конечно, будем говорить только про одну из них, но в голове держите обе. Второе деление мейоза очень напоминает митоз (можно даже сказать о том, что оно его повторяет). Разница только в наборах и в том, что в профазе 1 между хромосомами произошел обмен генетической информацией.

зачем клетка перед делением удваивает хромосомы. image 4. зачем клетка перед делением удваивает хромосомы фото. зачем клетка перед делением удваивает хромосомы-image 4. картинка зачем клетка перед делением удваивает хромосомы. картинка image 4.

Профаза второго деления

зачем клетка перед делением удваивает хромосомы. image 6. зачем клетка перед делением удваивает хромосомы фото. зачем клетка перед делением удваивает хромосомы-image 6. картинка зачем клетка перед делением удваивает хромосомы. картинка image 6.

Метафаза второго деления

Хромосомы выстраиваются по экватору, они потеряли свои гомологичные пары в первом делении, поэтому теперь выстраиваются в линию — как в митозе. Нити веретена деления прикрепляются к центромерам хромосом с каждого полюса, выходит так, что каждую хромосому с двух сторон фиксирует веретено деления. События, происходящие в эту фазу, не приводят к изменению хромосомного набора, он остается n2c.

зачем клетка перед делением удваивает хромосомы. image 7. зачем клетка перед делением удваивает хромосомы фото. зачем клетка перед делением удваивает хромосомы-image 7. картинка зачем клетка перед делением удваивает хромосомы. картинка image 7.

Анафаза второго деления

Нити веретена деления сокращаются и разрывают двухроматидные хромосомы на две однохроматидные сестринские хромосомы, каждая из которых несет по одной молекуле ДНК. Потом эти хромосомы растаскивают по полюсам. Таким образом, из каждой хромосомы образуется две новые, количество ДНК при этом не меняется. Просто раньше в каждой из хромосом было по две молекулы ДНК, а теперь по одной. Набор 2n2c.

зачем клетка перед делением удваивает хромосомы. image 8. зачем клетка перед делением удваивает хромосомы фото. зачем клетка перед делением удваивает хромосомы-image 8. картинка зачем клетка перед делением удваивает хромосомы. картинка image 8.

Телофаза второго деления

Хорошо, что в телофазах события всегда одинаковые: деспирализация хромосом, формирование ядер и деление клетки на две дочерние. Но мы помним, что во второе деление вступило две клетки, каждая из которых поделилась еще на две. Так что в процессе мейоза образуется 4 гаплоидные клетки с набором nc, причем эти клетки генетически отличаются друг от друга и от вступившей в деление материнской клетки.

зачем клетка перед делением удваивает хромосомы. image 9. зачем клетка перед делением удваивает хромосомы фото. зачем клетка перед делением удваивает хромосомы-image 9. картинка зачем клетка перед делением удваивает хромосомы. картинка image 9.

Зачем нужен мейоз?

Теперь, когда мы вспомнили, как именно проходит процесс мейоза, пришло время ответить еще на один вопрос. Зачем он проходит? Это важно понимать, чтобы лучше справляться с заданиями на мейоз в ЕГЭ.

Задания на мейоз в ЕГЭ по биологии

В экзамене достаточно много вопросов о делении клетки, они встречаются и в первой, и во второй части. Каждое из них может принести от одного до трех первичных баллов.

Пример 1

В ядрах клеток слизистой оболочки кишечника позвоночного животного 36 хромосом. Определите число молекул ДНК в анафазе второго деления мейоза при образовании гамет? В ответ запишите только соответствующее число.

Решение. В анафазе второго деления клетки диплоидный набор хромосом и ДНК – 2n2c, так как к полюсам расходятся двухроматидные хромосомы. В клетках слизистой оболочки набор тоже диплоидный, клетка соматическая. Число молекул ДНК совпадает с диплоидным набором и равняется 36.

Ответ: 36.

Пример 2

Установите последовательность процессов, происходящих в ходе мейоза.

Решение. Один из вариантов решения, разобрать в какой из стадий происходит каждый из процессов, а потом расставить фазы деления по местам.

Дальше вспоминаем последовательность фаз, для этого можно использовать слово «ПРИМАТ». Буквы в нем расположены в том же порядке, как и названия фаз во время деления.

Ответ: 51234.

Пример 3

Соматические клетки козы содержат 60 хромосом. Как изменится число хромосом и молекул ДНК в ядре при гаметогенезе перед началом деления и в конце телофазы мейоза I? Объясните результаты в каждом случае.

Решение.

Как видите, задания на мейоз в ЕГЭ по биологии вполне реально решить! Немного практики — и заветные баллы у вас в кармане. Если хотите разобраться в остальных темах, обязательно обратите внимание на курсы MAXIMUM. Приходите к нам на бесплатную консультацию по подготовке к ЕГЭ — чем раньше приступите к подготовке, тем больше будет времени, чтобы найти все слабые места и проработать их. Записывайтесь и начните путь к высоким баллам ЕГЭ уже сейчас!

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *