Вокабулярный аппарат что это такое
10 причин почему необходимо бинауральное протезирование
Полезные статьи и актуальная информация от специалистов по слуху «Аудионика»
Слухопротезирование двумя слуховыми аппаратами
В России распространено мнение, что для слухопротезирования достаточно одного слухового аппарата. Но так ли это на самом деле? Когда у нас снижается зрение на обоих глазах, мы не используем монокль, а берем очки, чтобы хорошо видел не один глаз, а два. Также и с ушами.
В этой статье мы расскажем, насколько важно протезирование двумя слуховыми аппаратами, т.е. бинаурально.
Бинауральное протезирование дает большие преимущества у пациентов с двусторонней сенсоневральной тугоухостью. Те пациенты, которые носят два слуховых аппарата, более довольны результатом протезирования, чем те, которые носят один слуховой аппарат.
В чем же плюсы двух слуховых аппаратов, спросите Вы?
При ношении 2 аппаратов стимулируются проводящие слуховые пути с обеих сторон, что ведет к активной работе слуховых центров в головном мозге;
Особенность бинаурального слухопротезирования
Можно эти преимущества измерить? Конечно можно.
При бинауральном протезировании заушными слуховыми аппаратами фоновый шум снижается на 2-3 дБ и на 6-7 дБ – эффект тени головы. Суммарный эффект при бинауральном протезировании получается на 10 дБ выше, а это значит, что разборчивость речи в двух аппаратах повышается на 40%, чем при моноуральном протезировании.
На самом деле преимуществ для бинаурального протезирования много, но в некоторых случаях провести его невозможно. Это может быть при тугоухости на одном ухе и норме на другом, при тугоухости на одном и глухоте на другом; при врожденных аномалиях развития ушной раковины, атрезии слухового прохода, часто рецидивирующих хронических средних отитах. Поэтому необходимо получить консультацию специалиста, пройти обследование, узнать характер аудиограммы, степень снижения слуха и… сделать правильный выбор.
Нужно помнить, что для того чтобы четко, полноценно слышать необходимо два уха.
Исправникова Олеся Владимировна
Обладатель диплома МГПУ по специальности «Сурдоакустик». Специалист по слуху «Аудионика» с 2016 года
Флюорография, рентген или КТ легких: чем отличаются и какой метод выбрать?
Лучевая диагностика
Лучевая диагностика объединяет различные методы получения изображения в диагностических целях на основе использования различных видов излучения: это флюорография, традиционное рентгенологическое исследование, компьютерная томография, ангиография. Методы рентгенодиагностики являются основой для диагностики травматических повреждений и заболеваний скелета, болезней легких, пищеварительного тракта.
Было определено, что разные ткани поглощают рентгеновские лучи с разной интенсивностью, поэтому на рентгеновской пленке (а сегодня – еще и на экране монитора приборов) получаются изображения с разной степенью окраски – от белого до черного. Чем плотнее ткань, тем она светлее на снимках. Таким образом, можно получить представление о структурах тела, костях, мягких тканях, определить объемные образования, полости и многие другие патологии.
Рентгенография
Рентгенография – метод рентгеновского исследования, при котором изображение исследуемого объекта получают на пленке или на специальных цифровых устройствах (цифровая рентгенография).
Она является самым доступным методом исследования.
Как работает флюорография легких
Сегодня флюорография применяется для того, чтобы получить двухмерный снимок грудной клетки, преимущественно оценивается состояние легких. В основном, применяется как скрининговый метод обследования – доступный в любой поликлинике и недорогой, быстрый в исполнении.
Что общего и чем отличаются рентген от флюорографии
Оба метода дают возможность получить только двухмерные снимки за счет рентгеновского излучения, используются для исследования грудной клетки и легочной ткани, их возможности зависят от имеющегося в клинике аппарата.
Чем старее аппаратура, тем больше доза облучения рентгена и флюорографии, хуже качество снимка. На старых аналоговых флюорографах можно получить снимки меньшего размера и качества, чем на рентгеновских. На новых цифровых аппаратах нет разницы между рентгеном и флюорографией при выявлении туберкулеза, пневмонии ни по облучению, ни по качеству снимка.
Есть и отличия в зоне обследования. Флюорографическое исследование позволяет оценить проблемы только в области грудной клетки (его выполняют на специальном аппарате), при рентгенографии исследуются различные части тела, используя стационарные и иногда даже мобильные аппараты.
Если оценивать – что лучше, рентген позволяет выполнить снимки в нестандартных проекциях, с захватом соседних областей. Поэтому, при подозрениях на серьезные патологии, бывает так, что пациента после флюорографии отправляют на рентген.
Как делают КТ легких
Компьютерная томография – это тоже рентгенологический метод исследования, в ходе которого выполняется серия послойных снимков тела в поперечном сечении. Компьютерная программа объединяет данные всех этих снимков в трехмерную модель, которая отображается на мониторе.
Сразу уточним, чем еще, кроме трехмерного снимка, отличается рентген от КТ. Такое исследование более детальное и информативное, чем плоский снимок, но и доза облучения больше. Чем новее оборудование, тем лучше программа обрабатывает данные, и для создания снимка требуется меньшая доза облучения. При выявлении некоторых патологий легких, сердца, других органов грудной клетки, стандартная рентгенография не покажет всех изменений. Так, например, при диагностике коронавируса, выбирая, какой метод использовать – рентген легких или КТ, врачи однозначно проводят томографию. Только она может показать типичные изменения, вызванные этим вирусом в легких. На стандартных снимках пневмонии может быть не видно.
Насколько опасен рентген?
Отвечая на вопросы о том, что вреднее, опаснее и информативнее, нужно исходить из предполагаемого диагноза и поставленных целей. В целом томография вреднее, она дает большую лучевую нагрузку, но при этом и её результаты дают максимум важной информации. Это избавляет от необходимости проводить дополнительные снимки в других проекциях, повторять процедуру.
Еще один важный момент – можно ли делать рентген после флюорографии или вместо нее. Если речь идет о диагностике туберкулеза, врачи допускают использование либо того, либо другого метода. Поэтому выполнить можно любое из исследований, их диагностические возможности в современных условиях примерно равны.
Как делают рентген или КТ легких детям
Важно уточнить особенности лучевых исследований в детском возрасте. Первый вопрос – с какого возраста проводится флюорография детям.
Согласно Приказу Минздрава РФ от 21.03.2017 N 124Н можно делать флюорографию детям старше 15 лет. Всем детям младше этого возраста, вне зависимости от показаний, данный вид диагностики не проводится. Если возникает необходимость в обследовании легких на предмет выявления туберкулезного поражения, проводится только рентгеновское обследование. Оно по показаниям допустимо у детей с рождения.
КТ можно делать детям с рождения, но для этого нужны четкие и обоснованные показания. Это такие патологии, которые нельзя подтвердить другим методом. Но важно подчеркнуть, что в возрасте до 6-7 лет, пока ребенку сложно длительное время лежать неподвижно, не плакать и не капризничать, томографию проводят под наркозом или медикаментозным сном.
Когда нужно и не нужно выполнять
Учитывая тот факт, что любые методы рентгеновского исследования – это лучевая нагрузка, для выполнения этих видов диагностики должны быть четкие обоснования и показания. Это справедливо как для взрослых, так и для детей.
Если это подозрение на пневмонию, туберкулезный процесс, абсцессы легкого, травмы грудной клетки, пороки развития, опухолевые процессы, требующие оперативного лечения – эти методы обоснованы и необходимы для постановки правильного диагноза и разработки наиболее оптимальной схемы лечения.
Нельзя проводить рентген и тем более томографию в профилактических целях, в тех случаях, когда диагноз можно определить без лучевых вмешательств.
Физиологические основы поддержания равновесия
Причиной головокружения в большинстве случаев служит нарушение согласованной деятельности различных сенсорных систем – вестибулярной, зрительной, проприоцептивной (информация о положении тела в пространстве, получаемая от рецепторов, расположенных главным образом в мышцах и сухожилиях). Кроме того, важной, а иногда и доминирующей причиной возникновения головокружения является дисфункция центральных структур, участвующих в поддержании равновесия тела, главным образом, ядер мозжечка.
Вестибулярная система
Вестибулярная система состоит из:
Правильная работа вестибулярной системы позволяет человеку четко ориентироваться в трехмерном пространстве, а именно:
Лабиринт располагается в каменистой части височной кости и включает:
Строение лабиринта
В каждой камере отолитового аппарата и в каждом полукружном канале имеется скопление рецепторных клеток – макула, которая покрыта желатинообразной массой – купулой. В отолитовом аппарате купула покрывает волосковые клетки наподобие подушки и содержит отложения кристаллов кальцита (отолиты), которые придают купуле дополнительный вес.
Отолитовый аппарат
В полукружных каналах желатинообразная масса не содержит отолитов и полностью перекрывает просвет канала.
Рецепторы вестибулярной системы представлены волосковыми клетками, которые несут на апикальной поверхности от 60 до 80 тонких выростов цитоплазмы (стереоцилий) и одну ресничку (киноцилию).
Восприятие положения тела относительно силы гравитации
При вертикальном положении головы макула утрикулуса располагается горизонтально. Когда голова наклоняется в сторону, утяжеленная отолитами желатинообразная мембрана под действием силы тяжести соскальзывает в сторону наклона. Это скольжение приводит к изгибанию стереоцилей волосковых клеток. Наклон стереоцилей сопровождается (в зависимости от направления) повышением или снижением частоты нервных импульсов в чувствительных нейронах вестибулярного ганглия. Макула саккулуса располагается вертикально и действует таким же образом.
Восприятие положения тела относительно силы гравитации
Восприятие линейных ускорений
При резком линейном ускорении тела купула саккулуса или утрикулуса за счет сил инерции смещается в направлении, противоположном направлению движения, что также приводит к изменению электрической активности рецепторов.
Восприятие углового ускорения
Три полукружных канала расположены в трех разных плоскостях. Каждый из трех каналов действует как замкнутая трубка, заполненная лимфой. В расширенной части канала его внутренняя стенка выстлана волосковыми клетками, а расположенная над ними купула полностью перекрывает просвет канала. При повороте головы полукружные каналы поворачиваются вместе с ней, а эндолимфа в силу своей инерции в первый момент остается на месте. В результате этого возникает разность давлений по обе сторону купулы, и она прогибается в направлении, противоположном движению. Это вызывает деформацию стереоцилий и последующее изменение активности нейронов.
Восприятие углового ускорения
При вращении головы только в горизонтальной, сагитальной или фронтальной плоскости активируются рецепторы одного из соответствующих каналов. При сложном вращении головы активируются рецепторы всех трех каналов. Информация от них поступает в головной мозг и на основе ее конвергенции и анализа модулируется истинная картина перемещения головы.
Центральный отдел вестибулярной системы
Аксоны чувствительных нейронов, тела которых располагаются в вестибулярном ганглии, следуют в продолговатый мозг и оканчиваются в четырех парных вестибулярных ядрах. Приходящие в эти ядра импульсы от рецепторов дают точную информацию о положении в пространстве исключительно головы (но не всего тела!), поскольку она может быть наклонена или повернута относительно туловища. Для восприятия положения тела в пространстве необходим также учет угла наклона и поворота головы относительно туловища, поэтому вестибулярные ядра получают дополнительные стимулы от проприорецепторов мышц шеи.
Ядра вестибулярного нерва и их связи
Далее от вестибулярных ядер афферентная импульсация направляется к нейронам специфических ядер таламуса, а отростки последних достигают постцентральной извилины коры больших полушарий головного мозга
Проприоцептивная система
Благодаря проприоцепции, мы ощущаем положение конечностей, движение и степень мышечного напряжения в них. Это дает человеку чувство “опоры”, т.е. осознание, что стопы опираются на какую-либо поверхность, удерживая вес тела. Рецепторный аппарат проприоцептивной чувствительности, расположен в мышцах, сухожилиях, фасциях, капсулах суставов, а также в коже.
Необходимо отметить, что важную роль в поддержании равновесия тела играют рецепторы глубокой чувствительности, расположенные не только в конечностях, но и в структурах шеи, главным образом, в глубоких мышцах. Информация, получаемая головным мозгом от этих рецепторов, необходима для пространственной ориентации человека, поддержании его позы, а также координинации движения головы и туловища.
Зрительная система
Эффективное поддержание равновесия требует четкого контроля со стороны зрительной системы (в соответствие с принципом обратной связи). При этом контроль над движениями мышц глазного яблока является чрезвычайно сложным процессом. Существует 3 основных системы контроля взора:
В пределах головного мозга эти системы контролируются определенными анатомическими зонами, которые являются в значительной степени изолированными, и обеспечивают две главные функции:
Система саккадических движений глазных яблок
Когда объект интереса появляется в периферии визуальной области, происходит быстрый поворот глазных яблок в его сторону, так, что изображение объекта проецируется на сетчатку в области желтого пятна. Тот же самый двигательный ответ глазных яблок может быть вызван внезапным звуком или болезненным стимулом. Такое быстрое движение глаз называется саккадическим, от французского слова, означающего резкое движение парусника при ветре или дергание головы лошади от потягивания узды. В целом, система саккадических движений глазных яблок обеспечивает обнаружение зрительной цели и выведение ее на наиболее чувствительную часть сетчатой оболочки. Саккады возникают, например, в процессе чтения, при этом глаза человека обычно совершают несколько саккадических движений на каждой строке. Кроме того, они появляются, когда человек рассматривает какой-либо объект (картину, скульптуру и пр.), но в этом случае саккады совершаются в разных направлениях (вверх, вниз, в стороны и под углом) последовательно от одной точки объекта к другой.
Классическое изображение, описывающее саккадические движение глазных яблок
при рассматривании объекта
Система плавных (следящих) движений глазных яблок
Когда объект рассматривания перемещается, саккадическая система может первоначально зафиксировать его, но скоро теряет, поскольку изображение ускользает из области желтого пятна (сетчатое скольжение). Плавные (следящие) движения глаз необходимы для длительной фиксации движущегося объекта и слежения за ним. После того как визуальная цель выбрана, система работает вне волевого контроля.
Схематическое изображение функционирования системы
плавных (следящих) движений глаз
Вестибуло-окулярная система
В то время как система следящих движений глазных яблок фиксирует изображение перемещающегося объекта рассматривания на желтом пятне, существует другая система, которая позволяет стабилизировать изображение неподвижного объекта рассматривания на сетчатке во время движения головы. Это основная функция вестибуло-окулярной системы. Благодаря ее наличию у человека во время движения на транспорте по неровной дороге или ходьбе не возникает проблем с четким рассматриванием отдаленного объекта. В том случае, когда по какой-либо причине вестибуло-окулярная система не работает возникает феномен, называющийся “осциллопсия” – “дергание” визуальной картинки при движении.
Мозжечок
Основная функция мозжечка заключается в получении информации о положении тела в пространстве от всех органов чувств и регуляции на ее основе мышечного тонуса и движений для поддержания равновесия и выполнения точных действий.
Для больных с повреждением мозжечка характерна астазия-абазия – нарушение способности к сохранению равновесия тела при стоянии и ходьбе. Больные ходят, широко расставив ноги – так называемая туловищная атаксия (“пьяная походка”).
Ходьба на пятках и носках невозможна. Атаксия в данном случае развивается вследствие неспособности головного мозга координировать деятельность мышц в процессе преодоления силы тяжести. Также выявляются глазодвигательные расстройства. Они проявляются нарушением фиксации взора на неподвижных или двигающихся объектах, в результате чего возникают рывковые движения глаз при слежении. Также характерен вертикальный нистагм, бьющий вверх или вниз.
Вертикальный нистагм при повреждении мозжечка.
Авторефрактометрия: что это такое и как ее проводят? Запись на прием к офтальмологу на сайте Клиники МЕДСИ
Оглавление
Авторефрактометрия – диагностическая процедура в офтальмологии, которая проводится с использованием специального прибора. Обследование позволяет объективно оценить особенности преломления световых лучей в оптической системе глаза. На основании полученных результатов врач может выписать рецепт на контактные линзы или очки. Такое исследование является максимально объективным. Это обусловлено тем, что все измерения проводятся без каких-либо действий пациента и получения от него субъективной информации. Авторефрактометрия дает возможность для выявления близорукости, дальнозоркости и астигматизма.
Суть метода
При исследовании специальный прибор – авторефрактометр – испускает лучи в инфракрасном спектре. Они проходят через зрачок, преломляются, отражаются от сетчатки и улавливаются специальными датчиками. Способность глаза преломлять свет рассчитывается компьютерной программой. Результаты врач получает в виде распечатки с рядом цифровых показателей. Метод подходит для диагностики как взрослых, так и детей.
Показания и противопоказания
Назначить авторефрактометрию врач может при:
Процедура обязательна при первичном назначении очковой или контактной коррекции.
Диагностику следует регулярно проходить всем людям, которые находятся в группе риска по развитию различных патологий органов зрения.
Методика неэффективна при:
При данных патологиях нарушаются прохождение светового пучка к сетчатке и его отражение.
Преимущества и недостатки
Авторефрактометрия – современная технология диагностики, которая отличается следующими преимуществами:
Единственным недостатком метода является усиление аккомодации. Результаты диагностики нередко имеют погрешность с уклоном к близорукости.
Методика проведения
Процесс диагностики является полностью автоматическим.
Исследование может проводиться не только врачом, но и младшим медицинским персоналом, так как не требует наличия специальных знаний и профессиональных навыков. Пациент располагается напротив рефрактометра и фиксирует взгляд на изображении (домике, воздушном шарике и др.). Врач наводит пучок света по центру зрачка. Далее проводятся все замеры. Обследование каждого глаза осуществляется отдельно. Сразу же после окончания диагностики пациент может получить распечатку с результатами.
Авторефрактометрия с узким зрачком
При обычной аккомодации такая оценка способности глаза преломлять свет является некорректной из-за значительной погрешности. Это обусловлено тем, что тонус мышцы глаза определяется целым рядом факторов. В их числе: время суток, качество отдыха, перенапряжение и др. С возрастом напряжение аккомодации сокращается. Благодаря этому ошибки при диагностике не являются столь заметными. Тем не менее, определять показатели рефракции лучше при «параличе» аккомодации (на широкие зрачки).
Авторефрактометрия с использованием циклоплегии
Для расширения зрачка применяются специальные препараты. Они выпускаются в виде капель и закапываются в глаза за несколько минут до обследования. Такая диагностика является максимально объективной. На ее результатах не сказываются сторонние факторы (усталость и др.).
Расшифровка результатов
Расшифровка результатов авторефрактометрии всегда проводится врачом. Это обусловлено тем, что для правильного проведения диагностики нужно обладать специальными знаниями.
В результатах можно увидеть следующие показатели:
Пример того, как выглядит офтальмологическое заключение:
Sph (обозначение для сферической линзы). Она используется для коррекции близорукости и астигматизма. Знак « – » перед показателями означает, что у пациента выявлена близорукость. Знак « + » обозначает выявленную дальнозоркость.
Cyl (обозначение для цилиндрической линзы). Она применяется для коррекции астигматизма. Также может отмечаться знаками « + » или « – ».
Ax/Axis – ось цилиндрической линзы.
По данному заключению врач сделает выводы о том, что пациент страдает близорукостью, на правом глазу присутствует астигматизм.
Детская авторефрактометрия
Диагностика маленьких пациентов всегда связана с рядом трудностей.
Именно поэтому детская авторефрактометрия требует особого протокола проведения. Недостаточно привлечь к ней опытный персонал, который быстро находит подход даже к самым капризным малышам. Требуется и специальное оборудование.
Для исследования зрения у детей используются бесконтактные педиатрические авторефрактометры. Они функционируют в пределах определенной дистанции, что позволяет определять рефракцию на двух глазах одновременно на расстоянии до 1 метра и даже при узком зрачке. Благодаря этому диагностика существенно упрощается. Обследовать малышей можно без прямого контакта. Когда аппарат приближается к зрачку ребенка на нужное расстояние, подается звуковой сигнал, привлекающий внимание маленького пациента. Процедура занимает лишь несколько секунд.
Педиатрическое оборудование дает возможность для определения показателей рефракции даже у младенцев и детей с непроизвольными глазными колебаниями. Также такие приборы применяются для диагностики «сложных» пациентов с различными неврологическими и иными патологиями.
Важно! В некоторых ситуациях требуется предварительная атропинизация. Только после нее результаты исследования будут максимально точными и объективными.
Атропинизация проводится с соблюдением ряда правил:
Важно! Зачастую при атропинизации маленькие пациенты плохо видят вблизи. При необходимости им выписывают очки. Лучше, если они будут иметь узкую оправу. Это позволит ребенку смотреть поверх них вдаль.
Преимущества проведения процедуры в МЕДСИ
Если вы хотите уточнить цену авторефрактометрии в МЕДСИ и записаться на обследование, позвоните
Аппарат Марко Росса, аппарат Хааса зачем они нужны?
Аппарат Марко Росса и аппарат Хааса – несъёмные ортодонтические аппараты, которые позволяют в большом объёме расширить верхнюю челюсть.
Если обратиться к истории, то считается, что аппарат быстрого нёбного расширения (БНР, ещё одно название) придумал итальянский доктор Марко Росса, а ортодонт Эндрю Хаас его модифицировал, заменив титановый винт на более мощный и прочный винт Хайрекс. Т.е. это одна и та же ортодонтическая конструкция.
Классический аппарат состоит из винта хайрекс, пластмассового базиса, опорный колец на молочные моляры и направляющих к молочным к клыкам.
Но, конечно же, в зависимости от клинических ситуаций могут быть индивидуальные модификации. Например, при преждевременном удалении молочных зубов. В таких случаях опорные кольца изготавливаются на постоянные шестые зубы.
Аппарат Марко Росса и аппарат Хааса – несъёмные ортодонтические аппараты, которые позволяют в большом объёме расширить верхнюю челюсть.
Если обратиться к истории, то считается, что аппарат быстрого нёбного расширения (БНР, ещё одно название) придумал итальянский доктор Марко Росса, а ортодонт Эндрю Хаас его модифицировал, заменив титановый винт на более мощный и прочный винт Хайрекс. Т.е. это одна и та же ортодонтическая конструкция.
Классический аппарат состоит из винта хайрекс, пластмассового базиса, опорный колец на молочные моляры и направляющих к молочным к клыкам.
Но, конечно же, в зависимости от клинических ситуаций могут быть индивидуальные модификации. Например, при преждевременном удалении молочных зубов. В таких случаях опорные кольца изготавливаются на постоянные шестые зубы.
И уже по гипсовой модели с опорными кольцами изготавливается аппарат в лаборатории.
Ребёнок сам выбирает цвет и героя, который будет жить у него в полости рта.
Далее конструкция фиксируется в полости рта и врач проводит обучение родителей активации винта и даёт рекоммендации.
⠀
В каких случаях показано применение аппарата Хааса?
1. Резкое сужение верхней челюсти
2. Большой дефицит места для постоянных зубов
После установки врач-ортодонт обучает родителей активировать винт в полости рта ребёнка специальным ключом.
Активации чаще всего производятся 1-2 раза в день. Сроки активации в среднем 3-4 недели. За это время винт практически полностью раскручивается. Но помним, что это стандартый протокол лечения, могут быть индивидуальные корректировки в зависимости от конкретной ситуации в полости рта.
Далее винт «стабилизируется», т.е. заливается специальным материалом для того, чтобы после прекращения его раскручивания он стал неподвижным.
Достаточно часто при лечении на аппарате Хааса мы наблюдаем положительные изменения и на нижней челюсти, хотя никаких конструкций для неё не использовали. Почему так происходит?
У детей в период активного роста очень хорошо проходит саморегуляция и когда нижняя челюсть высвобождается из «оков» маленькой и узкой верхней, она реализует свои потенциалы физиологического роста, расширяется, положение зубов улучшается.
Требования к пациенту и его родителям: