работа в mach3 на станке с чпу видео обучение
Настройка Mach3
Чтобы пропустить этап настройки можно скачать готовые профили под станок, подробнее в статье Быстрый старт в Маch3
Mach3 и его драйвер параллельного порта соединяется с оборудованием станка через параллельный порт (порт принтера). Если ваш компьютер не оборудован параллельным портом (всё больше и больше компьютеров выпускается без этого порта), вы можете приобрести специальную плату – USB-LPT, которая подключается к компьютеру через USB порт, или приобрести плату расширителя портов PCI-LPT или PCI-E-LPT.
1. После установки программы Mach3 проверяем работу драйвера.
После установки программы запускаем файл DriverTest.exe, при корректной работе драйвера наблюдаем картинку, рисунок 1.
Рисунок 1 Проверка работы драйвера программы Mach3.
Если нет, следует проверить следующее:
1) операционная система Windows 32bit
Рисунок 2. Просмотр настроек LPT порта
Mach3 поддерживает работу только с портами LPT1 или LPT2, если при установке внешней платы номер порта LPT3, то его нужно изменить в диспетчере устройств на LPT1.
Например если адрес порта CE00, то в Мach3 необходимо изменить 0х378(рисунок 4) на 0хCE00. Подробнее о том ка это сделать в статье «Подключение контроллера с использованием платы PCI-LPT»
Если используется переходник USB-LPT, скачать драйвер для переходника USB по ссылке https://cloud.mail.ru/public/6kXS/3CddBpHpG
А также скопировать файл mach3usb.dll(скачать здесь) в папку c:\mach3\plugins.
Контроллеры ТB6560HQT предназначены для управления биполярными шаговыми двигателями с максимальным током обмотки до 3,5 А. В эту категорию попадает абсолютное большинство двигателей с типоразмером до NEMA23, т.е. имеющих размер по боковой стороне до 2,3 дюйма или 57см.
Рисунок 3 Контроллер управления станком с ЧПУ в закрытом алюминиевом корпусе(на фото со снятой крышкой, для работы в режиме 1/2 шага переключатель 5 в положении ON, переключатель 6 в положении OFF, в контроллерах из комплекта станка переключатели уже выставлены, изменения не требуются)
Переключение режимов обеспечивается выбором положений DIP-переключателей М1 и М2 для каждого из каналов контроллера (в контроллерах из комплекта станка переключатели уже выставлены, изменения не требуются!).
Напряжение питания двигателей и контроллера – от 12 вольт до 36 вольт.
Контроллер и все двигатели питаются от одного источника.
Для улучшения работы контроллера и повышения скоростных качеств предусмотрена возможность установки скорости спада тока в обмотке, это обеспечивается изменением положений DIP-переключателей S7-S8 для каждого канала контроллера.
УСТАНОВКА
ТОКА
УСТАНОВКА СКОРОСТИ
СПАДА ТОКА
S8
РЕЖИМ ДРОБЛЕНИЯ
ШАГА
S5
S6
2. Установка порта.
В меню «config»(«Конфигурации») выбираем «Port and Pins» (Порты и Пины) ставим галку на нужный порт, рисунок 4.
Рисунок 4. Установка(выбор) порта управления станком.
3 Настройка пинов управления двигателями
Выберите вкладку «Motor Outputs»(«Выходы двигателей») и сделайте изменения, как на рисунке 5.
Для станков с 4-мя моторами добавляются пины по A-axis =Enabled Step Pin= 8, Dir Pin = 9.
Если необходимо изменить направление вращения двигателей, то нужно установить галочку в поле Dir LowActive напротив нужной оси.
Рисунок 5. Настройка пинов управления шаговыми двигателями в программе Mach3.
Рисунок 6. Настройка входного сигнала EStop.
4 Настройка выходных сигналов, управление включением контроллера.
На вкладке Output Signals сделать изменения в соответствии с рисунком 7.
Рисунок 7 Настройка выходных сигналов программы Mach3.
Примечание. Если после окончания настройки при нажатии кнопки Reset не произошло включение контроллера(включение контроллера слышно по шипению шаговых двигателей, и при управлении перемещением со стрелок клавиатуры, шаговые двигатели не вращаются, то необходимо инвертировать сигнал управления включением контроллера, сделать это можно щелкнув мышкой в поле Active Low (рисунок 7) для изменения галочки на крестик, и нажать кнопку «применить» ).
Для станков cnc-2535al, пин управляющий включением контроллера номер 14, рисунок 8
Рисунок 8 Настройка выходных сигналов программы Mach3.
5 Установка скоростей холостых перемещений и передаточных чисел.
В меню «config»(«Конфигурации»)выбираем пункт «Motor Tuning» (Настройка двигателей)
Передаточные числа, скорости и ускорения устанавливаются раздельно для каждой оси, поэтому выбираем нужную ось, например «ось X» (Axis X) и вводим данные для нее, затем сохраняем данные и переходим к следующей оси.
Передаточное число (для установленного ходового винта ЧПУ станка)
В окошке «Шагов на мм» (Step per mm) данные вводятся в соответствии с таблицей для винтовых передач, соединенных напрямую с двигателем, имеющим угол одного шага 1,8 градуса.
Шаг винта мм
Полный шаг
1/2 шага
1/8 шага
1/16 шага
Внимание! разделитель дробной части точка не запятая.
Устанавливаем для оси Х(аналогично для Y) количество шагов на мм
Для Моделист2030 c винтом М12 Steps per равным «228.57142»
Для алюминиевого станка cnc-2020al (200мм х 200мм) c винтом TR10 Steps per равным «200»
Для алюминиевого станка cnc-2535al (250мм х 350мм) c винтом TR14 Steps per равным «100»
Для Моделист3030 c винтом TR12 Steps per равным «133.333333»
Для Моделист3040, Моделист4060, Моделист4080 и алюминиевых станков (cnc-1522al2, cnc-2535al2, cnc-3040al, cnc-3040al2, cnc-6090al) c ШВП1605 Steps per равным «80».
Для Моделист4090, Моделист6090, Моделист60120 и алюминиевых станков Моделист (Моделист60120al, Моделист90120al, Моделист120120al) c ШВП1610 по Y, Steps per для оси Y равным «40», для остальных осей «80».
Cкорость перемещений Velocity ставим не более 3000 для станков с ШВП1605, не более 1000 для моделист2020 и 2030, ускорение Acceleration устанавливаем равным «50», длительность импульса шага Step Pulse и Dir Pulse устанавливаем равным «15», то есть как на картинке, рисунок 9.
Рисунок 9. Настройка передаточного числа, скорости холостых перемещений и ускорений.
затем нажимаем кнопку SAVE AXIS SETTING для сохранения
Переходим на вкладку Z Axis. Устанавливаем для оси Z:
Для Моделист2030 c винтом оси Z М12 Steps per равным «228,57142»
Для Моделист3030 и станка из алюминия cnc-2020al (200мм х 200мм) c винтом оси Z TR10 Steps per равным «200»
Для станка из алюминия cnc-2535al (250мм х 350мм) c винтом оси Z TR14 Steps per равным «100»
Для алюминиевых станков c винтом оси Z ШВП1605 Steps per равным «80»
Для Моделист3040-4060-4090 c винтом оси Z TR12 Steps per равным «133.333333».
Cкорость перемещений Velocity ставим аналогично описанному в разделе оси Х.
Автоматическое вычисление значений «steps per»(шагов на мм), то есть калибровка осей.
Рисунок 10. Автоматическая калибровка
Перемещаем калибруемую ось в начальную точку.
6. Настройка ведомой оси(только для 4х моторных станков Моделист3030М и Моделист60100 и Моделист90120)
Рисунок 12. Настройка ведомой оси
Рисунок 11. Выбор настройки ведомой оси
7. Включение питания контроллера
Подключаем кабель LPT к контроллеру и компьютеру.
Включаем питание контроллера. В главном окне программы MACH3 нажимаем клавишу «Cброс» (Reset), чтобы рамка вокруг неё не мигала и светилась зеленым цветом, рисунок 13.
Рисунок 13. Порядок старта
В этот момент двигатели должны зафиксировать свое положение и слегка зашуметь., если этого не произошло проверьте пункт 1.
Если контроллер уже настроенный из комплекта станка переходим к пункту 8.
8 Проверка работы
Если направление движения не верное, изменить его можно меню config->port and pins->motor outputs изменить значение Dir Low Active в нужном канале, рисунок 14.
Рисунок 14. Изменение направления перемещения.
После этого можно загрузить и запустить на выполнение программу резки. Предварительно установив инструмент над начальной точкой реза, обычно это
левый ближний угол станка и высоту детали, нажимаем кнопки ZeroX, ZeroY, ZeroZ как на картинке, рисунок 15.
Рисунок 15. Проверка работы
Рисунок 16 Контроль размеров детали и положения на столе.
Нажимаем кнопку Cycle Start и наблюдаем в окне Tool и на станке перемещения инструмента.
На этом настройка закончена.
При желании можно поэкспериментировать с установкой разных скоростей и ускорений, выбирая те, которые вас больше устраивают и при которых двигатели вращаются устойчиво без пропуска шагов и подергиваний.
Добившись максимально возможной скорости, имейте ввиду, что для реальной устойчивой работы эти значения желательно снизить на 20-40%.
Можно также поэкспериментировать со скоростью спада тока в обмотках, но это лучше делать на готовом станке.
В дальнейшем для работы используйте инструкцию программы MACH3..
Mach3 и его драйвер параллельного порта соединяется с оборудованием станка через один (иногда через два) параллельный порт (порт принтера). Если ваш компьютер не оборудован параллельным портом (всё больше и больше компьютеров выпускается без этого порта), вы можете приобрести специальную плату – USB-LPT, которая подключается к компьютеру через USB порт, или приобрести плату расширителя портов PCI-LPT или PCI-E-LPT.
Mach3 генерирует импульсы шага и сигналы направления, выполняя последовательно команды G-кодовой управляющей программы (УП), и посылает их на порт(ы) компьютера или внешний контроллер. Платы электропривода двигателей осей вашего станка должны принимать сигналы шага и сигналы направления (step и dir), выдаваемые программой Mach3. Так обычно работают все шаговые двигатели и современные сервосистемы постоянного и переменного тока, оснащенные цифровыми энкодерами (датчиками положения).
Чтобы настроить систему с ЧПУ на использование Mach3, вам необходимо установить ПО Mach3 на ваш компьютер и правильно подключить электроприводы ваших двигателей к порту компьютера.
Mach3 очень гибкая программа, созданная для управления такими машинами, как фрезерные станки, токарные станки, плазменные резаки и трассировщики. Характеристики станков, управляемых Mach3, следующие:
· Частичное ручное управление. Кнопка Аварийного останова (EStop) обязательно должна присутствовать на любом станке.
· Две или три оси, расположенные под прямым углом друг к другу (обозначаемые как X, Y, и Z)
· Инструмент, движущийся относительно заготовки. Начальные положения осей фиксируются относительно заготовки. Относительность движения заключается в том, что (1) движется инструмент (например, фреза, зажатая в шпинделе, перемещается по оси Z или токарный инструмент, закрепленный в зажиме, совершает движение в направлении осей X и Z) или (2) перемещается стол и закрепленная на нем заготовка (например, на консольно-фрезерном станке происходит перемещение стола по направлениям осей X, Y и Z, когда инструмент и шпиндель неподвижны).
· Выключатели, сообщающие, когда инструмент находится в положении «База».
· Выключатели, определяющие ограничения разрешенного относительного движения инструмента.
· Управляемый «шпиндель». Шпиндель может вращать инструмент (фрезу) или заготовку (точение).
· До трех дополнительных осей. Они могут быть определены как ротационные (т.е. их движение измеряется в градусах) или линейные. Каждая из дополнительных линейных осей может быть подчинена оси X, Y, или Z. Они будут перемещаться вместе, управляемые УП или вашими ручными переездами, но обращение к ним осуществляется по отдельности (для получения детального описания см. параграф 5.6.4).
· Выключатель или выключатели, соединенные в защитную цепь станка.
· Управление способом подачи охлаждения (жидкостного и/или газообразного)
· Энкодеры, датчики положения со стеклянной шкалой, которые могут показывать положение узлов станка
В большинстве случаев, станок подключается к компьютеру, на котором установлен Mach3, через параллельный (принтерный) порт(ы) компьютера. Простой станок использует один порт, комплексному – иногда требуется два. Управление специальными функциями, такими как LCD дисплей, смена инструмента, фиксирование осей или конвейер для отвода стружки, происходит посредством подключения специального устройства ModBus (например, PLC или Homan Design ModIO контроллер). Также соединение может происходить через «эмулятор клавиатуры», который генерирует псевдо нажатия клавиш в ответ на сигналы ввода. Mach3 управляет сразу шестью осями, координируя их одновременное движение с помощью линейной интерполяции, или осуществляя круговую интерполяцию по двум осям (из X, Y и Z), в то же время линейно интерполируя оставшиеся четыре с помощью угла, охваченного круговой интерполяцией. Таким образом, при необходимости инструмент может перемещаться по сужающейся винтовой траектории. Подача на протяжении этих передвижений поддерживается в соответствии со значением, указанным в вашей управляющей программе (УП), согласно ограничениям ускорения и максимальной скорости осей. Вы можете вручную передвигаться по осям, используя различные способы ручных Переездов. Если механизм вашего станка представляет собой руку робота или гексапод, то Mach3 не сможет им управлять, потому что в этом случае потребуются кинематические вычисления, чтобы соотнести положение «инструмента» в точках X,Y и Z с длиной и вращением «руки» станка. Mach3 может запускать шпиндель, вращать его в любом направлении и выключать его. Также возможно управление скоростью вращения (в об/мин) и наблюдение за углом его наклона для выполнения таких задач, как нарезание резьбы. Mach3 может включать и выключать два типа подачи охлаждения. Mach3 наблюдает за аварийными выключателями Estop и контролирует использование выключателей Баз, защитного оборудования и концевых выключателей. Mach3 сохраняет базу данных параметров до 256 единиц различного инструмента. Однако, если в вашем станке предусмотрена автоматическая смена инструмента или магазина, вам придется управлять ею самостоятельно. В Mach3 имеется возможность задания макросов, но для работы с этой
функцией пользователю нужно знать программирование.
Варианты приводов движения по осям
Шаговые и серво двигатели
Есть два возможных типа движущей силы для приводов осей
1 Шаговый двигатель
2 Серводвигатель (пост. или перем. тока)
Каждый из них может передвигать оси движение посредством ходовых винтов (прямых или шарико-винтовых), ремней, цепей, шестерен или червячной передачи. Способ передачи движения определяет скорость и крутящий момент получаемый от двигателя, зависящие от передаточного отношения редуктора, характеристик механического привода. Свойства биполярного шагового двигателя:
· Простое 4-х проводное подключение к двигателю
· Почти не требует ухода
· Скорость двигателя ограничена примерно 1000 оборотами в минуту, а вращающий момент ограничен, примерно, 3000 унциями на дюйм (21 Nm). Максимальная скорость определяется при работе двигателя или электроники привода на их максимально допустимом напряжении. Максимальный вращающий момент определяется при работе двигателя на его максимально допустимой силе тока (в амперах).
· Для производственных нужд шаговики станка должны управляться микрошаговым контроллером с дроблением шага, обеспечивающим плавность действий на любой скорости с соответствующей эффективностью.
· Шаговики обычно обеспечивают только управление открытыми циклами. Это означает, что существует возможность потери шагов при большой нагрузке, и это не сразу станет заметно для пользователя станка. На практике, шаговые двигатели обеспечивают вполне достаточную производительность на стандартных станках
С другой стороны, серводвигатель это:
· Относительно высокая цена (особенно для двигателей пост. тока)
· Требуются кабели и для двигателя и для энкодера
· Требуется уход за щетками (на двигателях переменного тока)
· Скорость двигателя может достигать 4000 оборотов в минуту, а вращающий момент практически не ограничен (насколько позволит ваш бюджет!)
· Используется управление закрытыми циклами, так что положение привода всегда должно быть правильным (иначе будет подан сигнал о сбое)
Фрезерный станок с поперечной кареткой
Начнем с проверки минимально возможного расстояния движения. Это будет абсолютный предел по точности выполняемой на станке работы. После мы проверим ускоренные переезды и крутящий момент. Предположим, например, что вы создали фрезерный станок с поперечной кареткой (ось Y), и ход поперечной каретки составляет 12 дюймов. Вы собираетесь использовать винт с резьбой в одну нить, с шагом в 0.1 дюйм и шариковой гайкой. Ваша цель, достичь минимального движения в 0.0001
дюйма. Один полный оборот винта с шагом в 0.1 дюйма дает движение на 0.1 дюйма, так что перемещение на 0.0001 дюйма – это 1/1000 часть от этого. Это 1/1000 оборота вала двигателя, если он напрямую соединен с винтом. Использование шагового двигателя. Минимальный шаг шагового двигателя зависит от того, каким образом он управляется. Обычно распространенные шаговые двигатели имеют 200 полных шагов на оборот, но контроллеры также обеспечивают и микро-шаговые режимы. Микрошаговые режимы помогают добиваться гладкого передвижения на высшем значении скорости подачи, и многие контроллеры позволяют производить 10 микрошагов на один полный шаг. 200-шаговый двигатель с 10 микрошагами на один полный шаг
обеспечивает 1/2000 оборота, как минимальный шаг. Как показано в примере выше, два микро-шага дадут желаемое минимальное перемещение на 0.0001 дюйма. Это, однако, должно рассматриваться с некоторыми оговорками. Тогда как число микрошагов на один шаг растет, крутящий момент быстро падает. В зависимости от нагрузки, ложащейся на двигатель, может не быть достаточного крутящего момента для действительного движения мотора на один микрошаг. Бывает необходимо сделать
несколько микрошагов прежде чем появится достаточный крутящий момент. В общем, для получения точных результатов используйте не микрошаговый режим. Основные преимущества микрошагового режима – уменьшение механических помех, сглаживание запуска и снижение резонансных проблем. Теперь обратим внимание на возможную скорость ускоренных переездов. Предположим, по минимуму, что максимальная скорость двигателя – 500 оборотов в минуту. В нашем примере с
ходовым винтом с шагом 0.1 дюйма, 500 оборотов в минуту дадут скорость ускоренных переездов 50 дюймов в минуту, или около 15 секунд для преодоления 12 дюймов длины направляющих. Этот результат является удовлетворительным, но не впечатляющим. На такой скорости электронике микрошагового привода двигателя требуется 16,667 (500 об./мин. * 200 шагов на оборот * 10 микрошагов на шаг / 60 секунд в минуте) импульсов в секунду. На компьютере с частотой 1 ГГц, Mach3 может генерировать одновременно по 35,000 импульсов в секунду для каждой из 6 возможных осей. Так что, с такой задачей она справится без проблем. Теперь следует определить требуемый для станка крутящий момент, который задаст параметры требующегося двигателя. Одним из способов измерить его, является установка станка на тяжелейший рез, который, как вы считаете, вам когда-нибудь придется сделать, применив наибольший затяг (скажем 12”) на ручном колесике, применяемом на направляющих, закрутив до отказа балансировочную пружину (или приспособив под эти цели пружину от кухонных весов). Крутящий момент для этого реза (в унциях-дюймах) – считанный баланс (в унциях) x 12. Другой способ, это использовать информацию о калибре и параметрах двигателя, который, как вы знаете, стоит на таком же станке с такими же направляющими и винтом. Поскольку шаговый двигатель может «терять шаги» с набеганием погрешности, лучше используйте двигатель большего калибра с запасом в крутящем моменте. Также вы можете увеличить крутящий момент с помощью редуктора. Если вычисленная скорость ускоренных переездов находится в разумных пределах, вы можете рассмотреть вариант снижения передаточного отношения до 2:1 (применив, скажем, зубчатую ременную передачу), что должно удвоить крутящий момент на винте. Это позволит использовать двигатель меньшего калибра (а, следовательно, и дешевле).
Концевые выключатели (Limit) и выключатели Баз (Home switches)
Концевые выключатели (Limit) используются для того, чтобы не давать осям двигаться слишком далеко и тем самым избежать возможного повреждения станка. Вы можете использовать станок и без них, но небольшая ошибка в расчетах может повлечь за собой множество повреждений, устранение которых обойдется довольно дорого
Статьи по подготовке файлов резки для фрезерного станка в программе ArtCam:
Все о системе Mach3
Mach3-программа управления станком с ЧПУ, предназначенная для самостоятельного управления станками с цифровым управлением. Программа одинаково эффективна для всех типов станков независимо от того, для каких целей используется прибор: фрезерование, гравировка или токарная обработка. Эта программа является одним из самых популярных решений этого типа. Назначение полное наименование программы ArtSoft Mach3. Он используется в компьютерных устройствах, подключенных к машинам. Чтобы запустить программу, на компьютере должна быть установлена операционная система компании Microsoft.
Приложение и программное обеспечение были созданы американским производителем. Его популярность объясняется простотой использования, что обеспечивает возможность применения как в производстве, так и в повседневной жизни.
Чтобы Mach3 был запущен на вашем компьютере, он должен соответствовать минимальным требованиям.
Операционная система Windows не старше десятка лет.
Тактовая частота процессора составляет 1 гигагерц.
Минимальный объем ОПЕРАТИВНОЙ памяти составляет 512 мегабайт.
Память видеокарты не менее 64 мегабайт.
Объем свободной памяти на жестком диске составляет не менее 1 гигабайт.
Наличие LPT порта и не менее двух разъемов USB.
Система Mach3-это, блоком алгоритмов обьединненых в сложное приложение. После его установки на компьютере, вы сможете самостоятельно создавать программы управления. После их создания они загружаются в память модульной системы, к которой подключено цифровое управление. Основная задача компьютера-настроить параметры для работы с станковым оборудованием. Программа работает как обычное оконное приложение и не перегружает операционную систему. Перед использованием необходимо ознакомиться с инструкцией по. Обучение не займет много времени.Характеристика приложение в состоянии управлять одновременно шестью координатами.
Программное обеспечение поставляется со встроенным программным обеспечением, которое позволяет передавать файлы прямым способом. Допускается загрузка файлов в четырех форматах. В случае необходимости можно изменить интерфейс приложения. С его помощью устройство управляет скоростью вращения шпинделя. Управление реле осуществляется на нескольких уровнях.
Обработка регистрируется системой видеонаблюдения, которая передает видео в специальное окно программы. Для удобства режим окна можно переключить в полноэкранный режим. Создана программа совместимая с современными сенсорными устройствами.
Мастерс
Если настройка будет выполнена с ошибками, результатом может быть испорчен инструмент управления, модуль с ЧПУ или другие элементы.
Подготовка осуществляется в несколько шагов:
необходимо полностью подключить оборудование и проверить их производительность (тест можно выполнить как с помощью стандартной диагностики, так и с помощью различных программ);
затем осуществляется установка Mach3 (перед установкой убедитесь в том, что компьютерное устройство соответствует минимальным требованиям программы);
рекомендуется использовать лицензионную версию приложения (из-за высокой стоимости лицензии и английский программного обеспечения часто используются пиратские русифицированные сборки, однако они могут быть повреждены, а могут нанести вред оборудования);
работа операционной системы должна быть оптимизирована (с этой целью рекомендуется отключить приложения, в том числе те, которые работают в фоновом режиме);
во время работы программы не рекомендуется запускать другие приложения (в частности, это касается Игр, потому что они способны нагрузки на компьютер).
Если компьютер будет использоваться не только для работы с Mach3, жесткий диск необходимо разбить на подразделы. Этот шаг необходим, если компьютер будет использоваться для создания управляющих программ или других целей. Следует установить отдельную операционную систему, на которой будет работать приложение. Другие приложения не должны быть размещены в этой системе. Использование перед настройкой программы внимательно ознакомьтесь с инструкциями, кнопками и их значением. Mach3 взаимодействует с различными машинами, так что для каждого типа необходимо открыть собственную вкладку с параметрами. При покупке лицензионной версии инструкция должна прилагаться. Если пиратская версия используется или инструкция потеряна, ее можно бесплатно скачать в интернете, чтобы обучить ее.
Перед обработкой детали необходимо включить машину и убедиться, что она работает нормально. Об этом будет говорить отсутствие рывков и перерывов в работе. Затем осуществляется запуск устройства. Приложение позволяет выполнять передачу в автоматическом режиме, нажав на специальную кнопку. С его помощью пробном режиме можно как включить, так и отключить. Управлять рабочим механизмом устройства можно с помощью мышки.
Управление бывает двух видов: шаг за шагом; непрерывный.
С помощью первого типа машина доводится до рабочего состояния нажатием клавиши и выполняет обработку на определенном участке.
Второй тип характеризуется работой машины, в то время как оператор будет не активен. Если отпустить клавишу, обработка прекращается.
ОБЩИЕ СВЕДЕНИЯ О ПРОГРАММАХ
Программа управления для станков с ЧПУ является неотъемлемой частью станков с чпу. Он используется для управления станком и обеспечивает автономный или полуавтономный процесс обработки заготовок. Благодаря ей существует возможность точного изготовления высококачественных деталей сложной формы без технологических ошибок. Для разработки управляющих программ требуются специальные навыки.
Специальное программное обеспечение позволяет освободить оператора от постоянного отслеживания рабочего оборудования и необходимости контролировать процесс каждую минуту. Такое программное обеспечение включает в себя набор команд, которые постоянно доставляются на станке с ЧПУ.Команды позволяют в автоматическом режиме: переместить инструменты, перемещение деталей в системе координат, контролировать скорость обработки.
В качестве ориентира для дальнейших действий, каждый раз принимается положение исполнительного инструмента, который он занимал ранее.G-КОДА ДЛЯ СТАНКА С ЧПУ Постановка задач для всех систем ЧПУ осуществляется с помощью универсального языка программирования в виде кода управления, который называется кодом G. Программа управления состоит из последовательного набора рамок, каждая из которых отвечает за один шаг работы машины. Готовые задания для обработки деталей цепочкой отдельных команд G.
Основные команды языка называются работы, их ровно 100: от G00 до G99.
Например, линейная интерполяция, функция G01, служит для включения режима движения рабочего инструмента параллельно оси. Для запуска режима работы в дюймовой системе используется функция G20, а для входа миллиметров используется код G21.
С помощью команд, преобразованных в код G происходит: линейное и круговое движение элементов станка с определенной скоростью (регулировка направления вращения, коррекция диаметра или радиуса движения инструмента);
выполнение типовых последовательностей (стандартные отверстия и резьбу); установка параметров: системы координат станка, плоскости работы, скорости вращения рабочего инструмента, скорости подачи.
Затем мы рассмотрим программы управления для станков с ЧПУ несколько самых популярных разработчиков. Процесс создания программы ЧПУ состоит из нескольких этапов. Примером может быть создание проекта для резьбы по дереву.
Станки с ЧПУ программируются в пакете программного обеспечения «CAD/CAM», так что весь процесс работы будет состоять из трех этапов:
1. Создание модели изделия. Для этого используются 3D-редакторы. работу выполняют специально обученные дизайнеры, к услугам которых и нужно будет прибегнуть. Создается модель в будущем может быть реализован в разных масштабах и размерах.
2. Создание программы управления. Для этого используйте программное обеспечение, описанное выше. Готовая модель будущего продукта импортируется в выбранное программное обеспечение. В соответствии с его размерами, формой, типом фрез и другими параметрами составляется соответствующее программное обеспечение.
3. Фрезеровка. Команды управляющей программы читаются на станке, благодаря чему действующие органы устройства движутся по ранее созданным координамм, выполнив определенные действия.
Работа со станком, управляемая с помощью ЧПУ требует определенных знаний. Однако наличие специального программного обеспечения, облегчает задачу.
Конструктивные особенности станков с ЧПУ имеют расширенные технологические возможности при сохранении высокой надежности работы. Конструкция станков с ЧПУ, как правило, должна обеспечивать сочетание различных видов обработки (токарно-фрезерование, фрезерование-шлифование), удобство загрузки заготовок, разгрузки деталей (что особенно важно при использовании промышленных роботов), автоматического или дистанционного управления заменой инструмента.
Улучшение точности обработки достигается за счет высокой точности производства и жесткости машины, превышающей жесткость традиционной машины с той же целью, уменьшая длину кинематической цепи: по возможности применяются автономные приводы, уменьшая количество механических передач.
Станки с ЧПУ также должны обеспечивать высокую скорость. Улучшенная точность помогает устранить зазоры в механизмах передачи привода, уменьшить потери на трение в направляющих и других механизмах, повысить вибрационную стойкость, уменьшить тепловую деформацию, применять датчики обратной связи на машинах. Чтобы уменьшить тепловые деформации, необходимо обеспечить равномерную температуру, например, в механизмах машины, что способствует подогреву машины и ее гидравлической системы. Погрешность температуры машины также может быть уменьшена путем введения коррекции мощности сигнала датчика температуры.
Столы, например, выполнены в виде коробок с продольными и поперечными ребрами. Основные части литые или сварные.
Существует тенденция выполнять такие детали из полимерного бетона или синтетического гранита, что еще больше повышает жесткость и вибрационную стойкость машины.
Направляющие машины с ЧПУ обладают высокой износостойкостью и низкой силой трения, что снижает мощность серводвигателя, повышает точность движения, уменьшает несоосность в системе.
Скользящие рельсы и суппорты для снижения коэффициента трения, скользящая сталь (или высококачественный чугун) пластиковое покрытие (фторопластик и т. д.)»
Роликовые линии имеют высокую прочность, характеризуются небольшим трением, а коэффициент трения практически не влияет на скорость движения. Предварительное натяжение увеличивает жесткость 2 направляющих для создания напряжения с регуляторными устройствами.
Приводы и преобразователи для станков с ЧПУ.
В связи с развитием микропроцессорного оборудования для приводов используются инверторы и полностью управляемый микропроцессором основной привод-цифровые приводы-электродвигатели, работающие в постоянном или переменном токе. Структурно преобразователи частоты, сервоприводы и основные приводы и обратные устройства представляют собой отдельные электронные блоки управления.
Блок питания для станков с ЧПУ.
Двигатели, приводимые в движение синхронными или асинхронными машинами цифровыми преобразователями, используются в качестве драйверов. Бесщеточные синхронные двигатели (козловые) для станков с ЧПУ изготовлены из редкоземельного постоянного магнита и оснащены датчиками обратной связи и тормозами. Асинхронные двигатели используются меньше, чем синхронные двигатели. Для водителя характерны минимально возможные колебания кронштейна, короткое ускорение и торможение, небольшие силы трения, снижение нагрева приводных элементов, широкий декабрь управления. Предоставление этих функций включает в себя шаровые и гидростатические винтовые шестерни, направляющие роликов и гидростатические направляющие, беспилотные шестерни с короткой кинематической цепью и т. д.
Основными драйверами для станков с ЧПУ обычно являются высоковольтные и низковольтные двигатели переменного тока. Поскольку трехфазные асинхронные двигатели, представляющие драйверы, чувствуют себя слишком большими и работают в воздухе, когда металлическая пыль, опилки, масло и т. д. различные датчики, встроенные в двигатель, такие как датчик положения шпинделя, необходимы для обеспечения ориентации или независимых координат.
Преобразователи частоты для управления асинхронными двигателями имеют диапазон управления до 250 декабря. Преобразователи-это электронные устройства, основанные на технологии микропроцессорных устройств. Программирование и параметризация их работы осуществляется бортовыми программистами с цифровым дисплеем или графикой. Оптимизация управления достигается автоматически после ввода параметров двигателя. В математическом предохранителе есть возможность установить драйвер и запустить его на диск.
Шпиндели станков с ЧПУ изготовлены с точностью, жесткостью с износостойкостью, шеей, посадочной поверхностью и основанием. Конструкция шпинделя намного сложнее из-за встроенных устройств и инструментов автоматического режима, датчиков управления, адаптивной и автоматической диагностики. Опоры шпинделя должны обеспечивать точность шпинделя, повышенную жесткость, низкую температурную деформацию при длительном переменном рабочем состоянии. Точность вращения вала обеспечивает, прежде всего, высокоточное производство подшипников. Чаще всего роликовые подшипники используются в опорах вала. Чтобы уменьшить воздействие зазоров и повысить жесткость кронштейнов, обычно устанавливаются натяжные подшипники или увеличивается количество подвижных элементов. Подшипники скольжения на подшипниках вала используются реже и используются только в том случае, если имеются устройства с периодической (ручной) или автоматической осевой или радиальной регулировкой зазора. Прецизионные машины используют подшипники где сжатый воздух находится между шейным валом и поверхностью подшипника, тем самым декомпрессионный износ и тепло подшипника, повышая точность вращения. Перемещение корпуса рабочей машины в нужное положение в соответствии с программой должно иметь высокую жесткость и плавное движение на низких скоростях, более высокую скорость вспомогательных движений рабочих органов(10 м мин и более).
Вспомогательные станки с ЧПУ, модифицированные инструменты, очистка стружки, система смазки, фиксация, устройства, загрузка и т. д. значительно отличается от аналогичных механизмов, используемых на традиционных универсальных машинах. Например, улучшение производительности станков с ЧПУ привело к резкому увеличению числа конвергентных стружек за единицу времени и, следовательно, к необходимости создания специальных устройств для удаления стружки.
Для минимизации потерь времени при зарядке используются устройства, позволяющие одновременно собирать заготовки и удалять детали при обработке другой заготовки.
Автоматические смены инструмента (автоматизация, головка револьвера) имеют емкость магазина или револьверной головки, необходимую для минимального времени смены инструмента, высокой надежности работы, стабильности положения инструмента, т. е. размера взлета при повторной смене инструмента и долговечности положения вала.
Сверлильная головка-самое простое устройство для замены инструмента: сборка инструмента и зажим выполняются вручную. В рабочем положении один из вращающихся валов от главного привода машины. Револьверные головки монтируются на токарных станках, сверлах, фрезерных станках, многофункциональных станках с ЧПУ
Типы станков с ЧПУ
Токарные станки с ЧПУ предназначены для внешней и внутренней обработки сложных частей корпуса вращения. Они делают наиболее очевидную номенклатуру в парке станков с ЧПУ. Токарные станки с ЧПУ выполняют ряд традиционных технологических процессов: токарный станок, резка, сверление, резьба и т. д. Центрирующие станки с ЧПУ предназначены для обработки деталей контурного вала простым и изогнутым. По программе можно резать нитки ножом на этих машинах. Кассетные машины с ЧПУ, фланцы, шестерни, колпачки, шкивы и т. д.предназначен для заточки, сверления, сверления, дозирования, намотки, намотки метром в осевых отверстиях таких деталей, как; лезвие может быть обернуто внутренней и внешней программой. Центрированные токарные станки с ЧПУ используются для внешней и внутренней обработки различных сложных деталей вращающихся корпусов и имеют центрирующие и кассетные токарные станки.
Станки с ЧПУ для карусели используются для обработки заготовок штабелированных корпусов.Токарный станок с ЧПУ оборудуйте головки пистолета и магазин инструментов. Головки пистолета имеют четыре, шесть и двенадцать позиций, а два инструмента могут быть размещены в любом положении для внешней и внутренней обработки заготовки. Ось вращения головки может быть расположена перпендикулярно оси вала или параллельно под углом.Фрезерные станки с ЧПУ.Фрезерные станки с ЧПУ предназначены для обработки плоских и пространственных поверхностей сложных форм. Конструкция фрезерных станков с ЧПУ похожа на традиционные фрезерные станки, в отличие от последних, автоматизация движения при формованиию.
Шлифовальный станок с ЧПУ.Системы с ЧПУ оснащены плоскими шлифовальными станками, круглыми и центрированными шлифовальными станками и другими машинами. При изготовлении станков с ЧПУ возникают технические трудности, вызванные следующими причинами. Процесс шлифования характеризуется, с одной стороны, необходимостью получения высокоточной и качественной поверхности с минимальным распределением размеров, с другой стороны, особенностью является быстрая потеря точности шлифовальной машины из-за интенсивного износа во время работы. Револьверные головки монтируются на токарных станках, сверлах, фрезерных станках, многофункциональных станках с ЧПУ.
Заключение
Станкостроение относится к числу базовых отраслей промышленности, поскольку благодаря ему производится все основное оборудование для промышленности. От станкостроительной сферы напрямую зависит успешность реализации политики импортозамещения, которую проводит государство. Поскольку станкоинструментальная промышленность создает львиную долю активной части основных фондов в металлообработке и машиностроении, она является одной из несущих отраслей промышленной революции и ядром высокотехнологического сектора экономики.