примеры по тригонометрии для тренировки

Решение тригонометрических уравнений — 39 примеров!

Привет, самый лучший ученик во Вселенной!

Сегодня мы с тобой изучим, как решать одну из разновидностей уравнений – тригонометрические. Мы решим 39(!) примеров, от самых простых, до самых сложных.

И станем на шаг ближе к заветной цели – сдать ЕГЭ по математике так, чтобы поступить в ВУЗ мечты!

Тригонометрические уравнения — коротко о главном

Тригонометрическое уравнение – это уравнение, в котором неизвестная находится строго под знаком тригонометрической функции.

Существует два способа решения тригонометрических уравнений:

Первый способ – с использованием формул.

Второй способ – через тригонометрическую окружность.

Тригонометрическая окружность позволяет измерять углы, находить их синусы, косинусы и прочее.

примеры по тригонометрии для тренировки. . примеры по тригонометрии для тренировки фото. примеры по тригонометрии для тренировки-. картинка примеры по тригонометрии для тренировки. картинка .

Чтобы уметь решать тригонометрические уравнения необходимо знать как минимум следующее:

Если ты что-то не знаешь, повтори следующие разделы:

Этого будет вполне достаточно. Если это по ходу моего повествования окажется не так, то не сердись, придётся вспомнить что-нибудь ещё, не упомянутое здесь.

Простейшие тригонометрические уравнения

Что же это такое, как ты думаешь? Является ли, например, уравнение

Ты и сам прекрасно понимаешь, что нет! Потому что ни одной тригонометрической функции \( \displaystyle \left( sin x,cos x,tg x,ctg x \right)\) в нём и в помине нет!

А что насчёт вот такого уравнения?

И опять ответ отрицательный!

Это так называемое уравнение смешанного типа.

Оно содержит как тригонометрическую составляющую, так и линейную (\( \displaystyle 3x\)).

Некоторые типы подобных уравнений мы будем с тобой решать в следующих раздела этой статьи.

Но вернёмся к вопросу: «Что же такое тригонометрические уравнения?»

Тригонометрические уравнения –это уравнения, в которых неизвестная находится строго под знаком тригонометрической функции!

Однако для начала мы не будем решать сложные и иногда неприступные тригонометрические уравнения, а ограничимся самыми простыми уравнениями вида:

Где \( \displaystyle a\) – некоторое постоянное число.

Например: \( \displaystyle 0,5;

\( \displaystyle f\left( x \right)\) – некоторая функция, зависящая от искомой переменной \( \displaystyle x\), например \( \displaystyle f\left( x \right)=x,

f\left( x \right)=\frac<\pi x><7>\) и т. д.

Такие уравнения называются простейшими!

Основная цель решения ЛЮБОГО тригонометрического уравнения – это свести его к виду простейшего!

Для этого, как правило, используют аппарат, который я описал в разделе «Формулы тригонометрии«

Так что очень важно, я бы даже сказал, жизненно необходимо научиться решать простейшие уравнения, ибо они – фундамент для решения сложных примеров.

Как часто тригонометрические уравнения встречаются на ЕГЭ?

Тригонометрические уравнения могут встретиться до четырех раз в заданиях ЕГЭ. Это может быть:

Так что, как ты понимаешь, при некоторых раскладах, навык решения данного вида уравнений может добавить в твою копилку аж 5 первичных баллов из 32!

Два способа решения тригонометрических уравнений – через формулы и по кругу

В принципе, я не могу сказать, что легче: держать в голове, как строится круг, или помнить 4 формулы.

Тут решать тебе самому, однако я всё же предпочитаю решать данные уравнения через формулы, поэтому здесь я буду описывать именно этот метод.

Вначале мы начнём с «самых простейших» из простейших уравнений вида:

Я хочу сразу оговориться вот о чем, будь внимателен:

То есть, тебе не надо знать вообще никаких формул, чтобы спокойно ответить, что уравнения, например:

\( \displaystyle cos\left( 3-sin\left( x \right) \right)=2\)

\( \displaystyle sin\left( 2<^<2>>-2x+1 \right)=-3\)

Корней не имеют.

Потому что они «не попадают» в промежуток от минус единицы до плюс единицы.

Ещё раз скажу: внимательно обдумай эти слова, они уберегут тебя от многих глупых ошибок.

Для остальных же случаев тригонометрические формулы такие как в этой таблице.

На самом деле в этой таблице данных немного больше, чем нужно.

Тебе нужно лишь запомнить первые два её столбца, другие столбцы – частные случаи решения тригонометрических уравнений.

Я, допустим, никогда не утруждаю себя их запоминанием, а вывожу ответ из основных формул.

Глядя на таблицу, не возникло ли у тебя пары вопросов?

У меня бы возникли вот какие:

Что такое \( \displaystyle n\) и что такое, например \( \displaystyle arcsin\alpha

Отвечаю на все по порядку:

В чем уникальная особенность тригонометрических уравнений перед всеми остальными, которые ты изучал?

ОНИ ИМЕЮТ БЕСКОНЕЧНОЕ КОЛИЧЕСТВО КОРНЕЙ.

И число \( \displaystyle n\) и служит для обозначения этой «бесконечности».

Конечно, вместо \( \displaystyle n\) можно писать любую другую букву, только не забывай добавить в ответе: \( \displaystyle n\in Z\) – что означает, что \( \displaystyle n\) – есть любое целое число.

Теперь насчёт арксинуса и других «арок». Вообще, так записываются обратные тригонометрические функции и понимать, скажем, \( \displaystyle arcsin\alpha \) надо как «угол, синус которого равен \( \displaystyle \alpha \)«

Алгоритм вычисления арксинусов и других «арок»

Вот простой пример вычисления аркосинуса:

\( \displaystyle \arccos \left( \frac<\sqrt<3>> <2>\right)\)

\( \displaystyle \frac<\pi ><6>\) и \( \displaystyle \frac<\pi ><3>\).

Если «арка» берется от отрицательного числа?

Всё ли я сказал про «арки»? Почти что да! Остался вот какой момент.

Что делать, если «арка» берётся от отрицательного числа?

Лезть в таблицу – как бы не так! Для арок выполняются следующие формулы:

И внимание.

Чтобы запомнить, ориентируемся на обычные тригонометрические функции: грубо говоря, синус и тангенс мы смотрим на тригонометрической окружности по вертикальной оси, а косинус и котангенс – по горизонтальной.

Соответственно, для арксинуса и арктангенса выбираем две четверти по вертикали: первую и четвёртую (минусик выносится из аргумента и ставится перед функцией), а для арккосинуса и арккотангенса – по горизонтали: первую и вторую.

В первой и второй четвертях аргумент уже не может быть отрицательным, поэтому и получаются формулы не совсем похожими.

Ну всё, теперь мы можем приступать к решению простейших уравнений!

Решение 11-ти простейших тригонометрических уравнений

Уравнение 1. \( \displaystyle sin\left( x \right)=0,5\)

Запишу по определению:

Всё готово, осталось только упростить, посчитав значение арксинуса.

Источник

Сборник заданий на тему «Тригонометрические функции»

Пособие содержит задачи и теоретический материал по всем основным темам раздела «Тригонометрические функции».

Единичная тригонометрическая окружность. Тригонометрические функции числового аргумента. Основные формулы тригонометрии

Тригонометрические функции, их свойства и графики. Построение графиков тригонометрических функций с помощью геометрических
преобразований графиков

Тригонометрические функции, их свойства и графики

Построение графиков тригонометрических функций с помощью геометрических преобразований графиков

Обратные тригонометрические функции

Простейшие тригонометрические уравнения

Тригонометрические уравнения, приводимые к квадратным

Однородные тригонометрические уравнения

Решение тригонометрических уравнений, введением вспомогательного угла

Решение тригонометрических уравнений, используя формулы преобразования произведения в сумму и обратно

Решение тригонометрических уравнений с помощью универсальной подстановки

Задачи про горные районы

Практическая часть ОГЭ по математике (№1-5).

Географический диктант 2021

Стартовал Географический диктант онлайн. Проверить свои знания географии России может любой желающий до 14:00 24 ноября.

Шойгу предложил вузам включить географию во вступительные испытания

Президент Русского географического общества (РГО), министр обороны России Сергей Шойгу считает, что географию необходимо включить в число вступительных испытаний при поступлении в вузы.

Источник

Алгебра

Лучшие условия по продуктам Тинькофф по этой ссылке

Дарим 500 ₽ на баланс сим-карты и 1000 ₽ при сохранении номера

. 500 руб. на счет при заказе сим-карты по этой ссылке

Лучшие условия по продуктам
ТИНЬКОФФ по данной ссылке

План урока:

Основное тригонометрическое тождество

Несложно догадаться, что синус и косинус угла – это величины, связанные друг с другом. Отложим на единичной окружности произвольный угол α и опустим из точки А перпендикуляр на ось Ох, в некоторую точку В:

Изучим треугольник АОВ. Он прямоугольный, а потому для него можно записать теорему Пифагора:

Мы рассматриваем единичную окружность, а потому ОА = 1, ОВ = соsα, AB = sinα. Подставив эти величины в равенство, получим тождество:

sin 2 α + соs 2 α = 1

Его называют основным тригонометрическим тождеством, ведь именно оно связывает значение двух прямых тригонометрических ф-ций – синуса и косинуса.

Задание. В прямоугольном треугольнике есть угол α. Известно, что sin α = 0,8. Чему равен соsα?

Решение. Подставим в основное тригон-кое тождество значение sinα = 0,8 и получим уравнение:

sin 2 α + соs 2 α = 1

соsα = – 0,6 или соsα = 0,6

Нашли два возможных значения косинуса. Но по условию α – это острый угол, ведь в прямоугольном треугольнике угол не может быть больше 90°. То есть угол α относится к первой четверти, а потому его косинус положителен. Значит, соsα = 0,6.

Рассмотренный пример показал, что одному заданному значению синуса соответствует сразу два противоположных друг другу значения косинуса. Верно и обратное. Действительно, отложим по оси Ох некоторую величину соsα и проведем вертикальную линию, чтобы найти соответствующие ему значения синуса. Она пересечет единичную окружность в двух точках с противоположными ординатами:

По этой причине при решении задач на использование основного тригон-кого тождества обычно указывают, к какой четверти относится угол α.

Задание. Вычислите sinα, если соsα = 0,28 и α принадлежит IV четверти.

sin 2 α + соs 2 α = 1

sin α = –0,96 или sin α = 0,96

Так как α принадлежит IV четверти, то sinα должен быть отрицательным, поэтому sinα = – 0,96.Напомним, что в IV четверти значение косинуса положительно, ведь соответствующая ей дуга единичной окружности располагается правее оси Оу, то есть абсциссы точек, принадлежащих ей, положительны.

Задание. Найдите tgα, если sinα = 5/13 и π/2 2 α + соs 2 α = 1

соs 2 α = 1 – sin 2 α = 1 – (5/13) 2 = 169/169 – 25/169 = 144/169

соsα = – 12/13 или соsα = 12/13

Условие π/2 2 α + соs 2 α = 1

Далее поделим его на величину соs 2 α:

Крайнее левое слагаемое – это величина tg 2 α, а следующая дробь равна единице, так как у неё совпадают числитель и знаменатель:

В итоге нам удалось получить ф-лу, которая связывает значение тангенса и косинуса угла. Есть такая формула и для котангенса. Для ее получения необходимо поделить основное тригон-кое тождество на sin 2 α:

Задание. Известно, что tgα = 0,75. Найдите соsα и sinα, если угол α принадлежит III четверти.

Просто подставляем в ф-лу известное значение тангенса и решаем получившееся уравнение. Для простоты вычислении заменим десятичную дробь 0,75 на обычную 3/4:

Так как угол относится к III четверти, где косинус отрицателен, то

Синус угла найдем, используя основное тригон-кое тождество:

sin 2 α + соs 2 α = 1

sin 2 α = 1 – соs 2 α = 1 – (– 0,8) 2 = 1 – 0,64 = 0,36

sinα = – 0,6 или sinα = 0,6

С учетом того, что в III четверти синус становится отрицательным, следует выбрать вариант sinα = – 0,6

Ответ: sinα = – 0,6; соsα = – 0,8.

Иногда ф-лы используют не для вычисления значений тригон-ких выражений, а для упрощения выражений. Из тождества sin 2 α + соs 2 α = 1 несложно получить из выражения

sin 2 α = 1 – соs 2 α

соs 2 α = 1 – sin 2 α

которые помогают в работе с длинными ф-лами.

Задание. Упростите выражение

4sin 2 α + 9соs 2 α – 6

таким образом, чтобы в нем не содержалось синуса.

Решение. Произведем замену sin 2 α = 1 – соs 2 α:

4sin 2 α+ 9соs 2 α – 6 = 4(1 – соs 2 α)+ 9соs 2 α – 6 =

= 4 – 4 соs 2 α + 9соs 2 α – 6 = 5соs 2 α – 2

Видим, что получилось значительно более простое выражение.

Задание. Избавьтесь от синуса в выражении

sin 4 α – соs 4 α

Решение. Воспользуемся ф-лой разности квадратов:

sin 4 α – соs 4 α = (sin 2 α – соs 2 α)(sin 2 α + соs 2 α) = (sin 2 α – соs 2 α)•1 =

= 1 – соs 2 α– соs 2 α = 1 – 2 соs 2 α

Задание. Упростите дробь

Тригонометрические функции суммы и разности

Легко проводить вычисления, когда все тригонометрические действия выполняются над одним углом α. Однако иногда в задачах добавляется ещё один угол, который обычно обозначают как β. Существуют ф-лы, с помощью которых можно вычислять тригон-кие ф-ции от суммы и разности углов α и β.

Вывод этих ф-л достаточно сложен, поэтому сначала мы просто без доказательства приведем две из них, позволяющие вычислять синус суммы и косинус суммы:

Достаточно запомнить их, а далее следующие формулы можно выводить из них. Так, если вместо β подставить угол (–β), то получим формулы для разности. При этом мы используем тот факт, что синус – нечетная ф-ция, то естьsin (– β) = – sinβ, а косинус – четная ф-ция, то есть соs (– β) = соsβ:

Теперь поступим также с ф-лой для косинуса разности:

Итак, нам удалось получить ф-лы для нахождения синуса и косинуса суммы и разности углов.

С помощью этих формул возможно вычислить значение тригон-ких ф-ций для некоторых нестандартных углов. (Стандартными считаются углы в 0°, 30°, 45°, 60° и 90°, ведь для них значение тригон-ких ф-ций можно узнать из таблички.)

Задание. Вычислите соs 150°.

Решение. В табличке стандартных углов есть углы, равные 90° и 60°. Их сумма как раз равна 150°. Поэтому запишем:

Задание. Вычислите синус, косинус и тангенс для угла 15°.

Решение. Угол в 15° можно представить как разность 45° – 30°. Тогда синус будет вычисляться так:

Далее вычислим косинус:

Можно выполнить проверку. Полученные значения должны удовлетворять основному тригон-кому тождеству. И действительно:

Проверка пройдена: сумма квадратов синуса и косинуса оказалась равной единице. Теперь посчитаем tg 15°, используя определение тангенса:

Задание. Вычислите значение тригонометрического выражения

sinπ/7 соsπ/42 + sinπ/42 соsπ/7

Решение: Значение тригон-ких ф-ций для углов π/7 и π/42 мы не знаем, однако это не помешает вычислениям. Можно заметить, что исходное выражение представляет собой синус суммы π/7 и π/42:

sinπ/7 соsπ/42 + sinπ/42 соsπ/7 = sin (π/7 + π/42) = sinπ/6 = 1/2

Задание. Упростите выражение

Вынесем за скобки множитель 2:

Теперь произведем замену:

C учетом этого можно переписать выражение и использовать ф-лу суммы косинусов:

Формулы двойного угла

Что будет, если формулу синуса суммы подставить не два различных угла α и β, а два одинаковых угла α и α? Получится ф-ла для синуса двойного угла:

Аналогично можно составить ф-лу и для косинуса двойного угла:

Итак, справедливы следующие ф-лы:

Задание. Вычислите sin 120° и соs 120°.

Задание. Упростите выражение

соs 2 t – соs 2t = соs 2 t – (соs 2 t – sin 2 t) = соs 2 t – соs 2 t + sin 2 t = sin 2 t

Задание. Докажите, что функция

является периодической и имеет период, равный π.

Решение. Используем ф-лу квадрата суммы:

Таким образом, исходную ф-цию можно переписать в виде

По определению, ф-ция является периодической с периодом Т, если выполняется условие у(х + Т) = у(х). Поэтому подставим в нашу ф-цию величину х + π:

Получили, что у(х + π) = y(x), то есть ф-ция имеет период, равный π.

Задание. Выведите формулы синуса и косинуса тройного угла.

Решение. Для их получения следует использовать ф-лу синуса суммы углов, в которую подставляют вместо β величину 2α:

Аналогично можно получить и ф-лу для косинуса тройного угла:

Формулы понижения степени

Если нам необходимо узнать косинус угла, который вдвое больше табличного, мы используем ф-лу:

соs 2α = соs 2 α – sin 2 α

А что делать, если нам надо вычислить косинус угла, который вдвое меньше известного? Попробуем преобразовать ф-лу косинуса двойного угла:

В результате нам удалось получить тождество, позволяющее по косинусу удвоенного угла найти косинус самого угла! Однако значительно чаще в тригонометрии это равенство записывают в обратном порядке:

и называют ф-лой понижения степени. Действительно, в левой части стоит косинус в квадрате, а справа – косинус без квадрата, но вычисляется он от угла 2α, а не α.

Попробуем получить аналогичную ф-лу и для синуса. Для этого используем основное тригон-кое тождество:

С помощью этих ф-л можно вычислять тригон-кие ф-ции для некоторых малых углов. Так, ранее мы с использованием ф-лу разности синусов определили, что

При этом мы представляли угол 15° как разность 45° – 30°. Но как посчитать соs 7,5°? Этот угол невозможно представить как разницу или сумму известных нам табличных углов (0°, 30°; 45°; 60° и 90°). Однако поможет ф-ла понижения степени. Действительно, ведь 2•7,5° = 15°. Тогда можно записать:

Мы нашли соs 2 7,5°. Чтобы узнать соs 7,5°, необходимо извлечь квадратный корень:

Так как угол 7,5° принадлежит I четверти, то его косинус должен быть положительным, поэтому можно записать:

Видно, что получается довольно громоздкое выражение. Используя ф-лу понижения степени, можно найти косинус и угла, который ещё вдвое меньше, то есть равен 3,75°, но в результате получится ещё более громоздкое выражение.

Задание. Вычислите sinπ/8.

Решение. Угол π/4 является табличным (его градусная мера составляет 45°). Поэтому можно записать:

Эти примеры показывают, что тригон-кие ф-ции многих нестандартных углов можно выразить, используя квадратные корни. Возникает вопрос – а любую ли тригонометрическую ф-цию можно выразить таким способом? Оказывается, что нет. Например, sin 10° невозможно найти ни в одной, даже самой подробной тригонометрической таблице. Мы не будем это доказывать, но эту величину невозможно представить в виде выражения, используя арифметические операции и корни. Однако существуют приближенные методы, позволяющие с любой наперед заданной точностью вычислять значение тригонометрических ф-ций.

Формулы приведения

Возможно, вы уже заметили, что синусы и косинусы принимают одинаковые значения в углах, чья сумма равна 90°. Например, sin30° = соs60° = 1/2, и при этом 30° + 60° = 90°. Также мы знаем, что sin 45° = соs 45° (45° + 45° = 90°) и sin60° = соs30° (60° + 30°). В чем причина такой закономерности и справедлива ли она для нестандартных углов?

Используя ф-лу синуса разности, мы можем записать, что

Полученная ф-ла sin (90° – α) = соsα называется формулой приведения. При ее выводе мы использовали тот факт, что sin 90° = 1, а соs 90° = 0, поэтому формула получилась очень простой. Однако синусы и косинусы других углов, кратных 90° (или кратных π/2, если измерять углы в радианах), также равны 0, 1 или – 1, поэтому для них тоже можно получить подобные простые ф-лы, например:

Похожих ф-л можно написать несколько десятков! Все их запоминать не надо, так как существует особое мнемоническое правило, позволяющее записать необходимую ф-лу.

Пусть есть некоторое тригон-кое выражение вида

где f – тригонометрическая ф-ция (sin; соs; tg; ctg)

k– угол, кратный π/2 (π/2, π, 3π/2, 2π)

Мы хотим заменить ее другой ф-цией, только от угла α. На первом шаге мы смотрим на слагаемое k. Если оно кратно π (– π, π, 2π), то ф-ция f остается неизменной. Если же слагаемое k – это число π/2 или 3π/2, то ф-цию f надо поменять на так называемую кофункцию (синус меняем на косинус, тангенс на котангенс и наоборот).

Далее надо определить знак, стоящий перед новой ф-цией. Для этого мы предполагаем, что α – это острый угол, то есть он принадлежит I четверти. Далее с учетом этого предположения смотрим, в какую четверть попадает угол k ± α, и какое значение принимает там исходная тригонометрическая ф-ция. Если она отрицательна, то перед новой тригонометрической ф-цией надо поставить минус. В противном случае ничего ставить не надо.

Лучше всего изучить это алгоритм на примерах.

Задание. Упростите выражение соs (π/2 + α).

Решение. Первый шаг – смотрим на слагаемое под знаком косинуса. Это число π/2. Оно НЕ кратно π, а потому мы должны поменять косинус на синус:

Второй шаг – надо определить, надо ли ставить минус перед синусом. Если α – это острый угол, то угол (π/2 + α) попадет во II четверть:

Во второй четверти косинус отрицателен, а потому перед синусом следует поставить минус:

Важное примечание. В этом примере для составления формулы приведения мы «предположили», что угол α является острым. В результате нам удалось получить формулу соs (π/2 + α) = – sinα. Однако отметим, что полученная нами формула выполняется для абсолютно любых значений угла α, а не только для 0° 1 2 + 3 соs2x

Источник

Геометрия. Урок 1. Тригонометрия

Смотрите бесплатные видео-уроки по теме “Тригонометрия” на канале Ёжику Понятно.

примеры по тригонометрии для тренировки. Podpiska. примеры по тригонометрии для тренировки фото. примеры по тригонометрии для тренировки-Podpiska. картинка примеры по тригонометрии для тренировки. картинка Podpiska.

Видео-уроки на канале Ёжику Понятно. Подпишись!

Содержание страницы:

Тригонометрия в прямоугольном треугольнике

Рассмотрим прямоугольный треугольник. Для каждого из острых углов найдем прилежащий к нему катет и противолежащий.

примеры по тригонометрии для тренировки. 2. примеры по тригонометрии для тренировки фото. примеры по тригонометрии для тренировки-2. картинка примеры по тригонометрии для тренировки. картинка 2.

Синус угла – отношение противолежащего катета к гипотенузе.

sin α = Противолежащий катет гипотенуза

Косинус угла – отношение прилежащего катета к гипотенузе.

cos α = Прилежащий катет гипотенуза

Тангенс угла – отношение противолежащего катета к прилежащему (или отношение синуса к косинусу).

tg α = Противолежащий катет Прилежащий катет

Котангенс угла – отношение прилежащего катета к противолежащему (или отношение косинуса к синусу).

ctg α = Прилежащий катет Противолежащий катет

tg ∠ A = sin ∠ A cos ∠ A = C B A C

ctg ∠ A = cos ∠ A sin ∠ A = A C C B

tg ∠ B = sin ∠ B cos ∠ B = A C C B

ctg ∠ B = cos ∠ B sin ∠ B = C B A C

Тригонометрия: Тригонометрический круг

Тригонометрия на окружности – это довольно интересная абстракция в математике. Если понять основной концепт так называемого “тригонометрического круга”, то вся тригонометрия будет вам подвластна. В описании к видео есть динамическая модель тригонометрического круга.

Тригонометрический круг – это окружность единичного радиуса с центром в начале координат.

Рассмотрим прямоугольный треугольник A O B :

cos α = O B O A = O B 1 = O B

sin α = A B O A = A B 1 = A B

Итак, косинус угла – координата точки A по оси x (ось абсцисс), синус угла – координата точки A по оси y (ось ординат).

Давайте рассмотрим еще один случай, когда угол α – тупой, то есть больше 90 ° :

Ещё одно замечание.

Синус тупого угла – положительная величина, а косинус – отрицательная.

Основное тригонометрическое тождество

sin 2 α + cos 2 α = 1

Данное тождество – теорема Пифагора в прямоугольном треугольнике O A B :

A B 2 + O B 2 = O A 2

sin 2 α + cos 2 α = R 2

sin 2 α + cos 2 α = 1

Тригонометрия: Таблица значений тригонометрических функций

0 °30 °45 °60 °90 °sin α01 22 23 21cos α13 22 21 20tg α03 313нетctg αнет313 30

Тригонометрия: градусы и радианы

Как перевести градусы в радианы, а радианы в градусы? Как и когда возникла градусная мера угла? Что такое радианы и радианная мера угла? Ищите ответы в этом видео!

Тригонометрия: Формулы приведения

Тригонометрия на окружности имеет некоторые закономерности. Если внимательно рассмотреть данный рисунок,

можно заметить, что:

sin 180 ° = sin ( 180 ° − 0 ° ) = sin 0 °

sin 150 ° = sin ( 180 ° − 30 ° ) = sin 30 °

sin 135 ° = sin ( 180 ° − 45 ° ) = sin 45 °

sin 120 ° = sin ( 180 ° − 60 ° ) = sin 60 °

cos 180 ° = cos ( 180 ° − 0 ° ) = − cos 0 °

cos 150 ° = cos ( 180 ° − 30 ° ) = − cos 30 °

cos 135 ° = cos ( 180 ° − 45 ° ) = − cos 45 °

cos 120 ° = cos ( 180 ° − 60 ° ) = − cos 60 °

Рассмотрим тупой угол β :

Для произвольного тупого угла β = 180 ° − α всегда будут справедливы следующие равенства:

sin ( 180 ° − α ) = sin α

cos ( 180 ° − α ) = − cos α

tg ( 180 ° − α ) = − tg α

ctg ( 180 ° − α ) = − ctg α

Тригонометрия: Теорема синусов

В произвольном треугольнике стороны пропорциональны синусам противолежащих углов.

a sin ∠ A = b sin ∠ B = c sin ∠ C

Тригонометрия: Расширенная теорема синусов

Отношение стороны к синусу противолежащего угла равно двум радиусам описанной вокруг данного треугольника окружности.

a sin ∠ A = b sin ∠ B = c sin ∠ C = 2 R

Тригонометрия: Теорема косинусов

Квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними.

a 2 = b 2 + c 2 − 2 b c ⋅ cos ∠ A

b 2 = a 2 + c 2 − 2 a c ⋅ cos ∠ B

c 2 = a 2 + b 2 − 2 a b ⋅ cos ∠ C

Примеры решений заданий из ОГЭ

Модуль геометрия: задания, связанные с тригонометрией.

Тригонометрия: Тригонометрические уравнения

Это тема 10-11 классов.

Из серии видео ниже вы узнаете, как решать простейшие тригонометрические уравнения, что такое обратные тригонометрические функции, зачем они нужны и как их использовать. Если вы поймёте эти базовые темы, то вскоре сможете без проблем решать любые тригонометрические уравнения любого уровня сложности!

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *