Как учитывать погрешность измерений

Погрешность измерений

Неотъемлемой частью любого измерения является погрешность измерений. С развитием приборостроения и методик измерений человечество стремиться снизить влияние данного явления на конечный результат измерений. Предлагаю более детально разобраться в вопросе, что же это такое погрешность измерений.

Погрешность измерения – это отклонение результата измерения от истинного значения измеряемой величины. Погрешность измерений представляет собой сумму погрешностей, каждая из которых имеет свою причину.

По форме числового выражения погрешности измерений подразделяются на абсолютные и относительные

Абсолютная погрешность – это погрешность, выраженная в единицах измеряемой величины. Она определяется выражением.

Как учитывать погрешность измерений. %D0%90%D0%B1%D1%81%D0%BE%D0%BB%D1%8E%D1%82%D0%BD%D0%B0%D1%8F %D0%BF%D0%BE%D0%B3%D1%80%D0%B5%D1%88%D0%BD%D0%BE%D1%81%D1%82%D1%8C. Как учитывать погрешность измерений фото. Как учитывать погрешность измерений-%D0%90%D0%B1%D1%81%D0%BE%D0%BB%D1%8E%D1%82%D0%BD%D0%B0%D1%8F %D0%BF%D0%BE%D0%B3%D1%80%D0%B5%D1%88%D0%BD%D0%BE%D1%81%D1%82%D1%8C. картинка Как учитывать погрешность измерений. картинка %D0%90%D0%B1%D1%81%D0%BE%D0%BB%D1%8E%D1%82%D0%BD%D0%B0%D1%8F %D0%BF%D0%BE%D0%B3%D1%80%D0%B5%D1%88%D0%BD%D0%BE%D1%81%D1%82%D1%8C.(1.2), где X — результат измерения; Х0 — истинное значение этой величины.

Поскольку истинное значение измеряемой величины остается неизвестным, на практике пользуются лишь приближенной оценкой абсолютной погрешности измерения, определяемой выражением

Как учитывать погрешность измерений. %D0%90%D0%B1%D1%81%D0%BE%D0%BB%D1%8E%D1%82%D0%BD%D0%B0%D1%8F %D0%BF%D0%BE%D0%B3%D1%80%D0%B5%D1%88%D0%BD%D0%BE%D1%81%D1%82%D1%8C 2. Как учитывать погрешность измерений фото. Как учитывать погрешность измерений-%D0%90%D0%B1%D1%81%D0%BE%D0%BB%D1%8E%D1%82%D0%BD%D0%B0%D1%8F %D0%BF%D0%BE%D0%B3%D1%80%D0%B5%D1%88%D0%BD%D0%BE%D1%81%D1%82%D1%8C 2. картинка Как учитывать погрешность измерений. картинка %D0%90%D0%B1%D1%81%D0%BE%D0%BB%D1%8E%D1%82%D0%BD%D0%B0%D1%8F %D0%BF%D0%BE%D0%B3%D1%80%D0%B5%D1%88%D0%BD%D0%BE%D1%81%D1%82%D1%8C 2.(1.3), где Хд — действительное значение этой измеряемой величины, которое с погрешностью ее определения принимают за истинное значение.

Относительная погрешность – это отношение абсолютной погрешности измерения к действительному значению измеряемой величины:

Как учитывать погрешность измерений. %D0%9E%D1%82%D0%BD%D0%BE%D1%81%D0%B8%D1%82%D0%B5%D0%BB%D1%8C%D0%BD%D0%B0%D1%8F %D0%BF%D0%BE%D0%B3%D1%80%D0%B5%D1%88%D0%BD%D0%BE%D1%81%D1%82%D1%8C. Как учитывать погрешность измерений фото. Как учитывать погрешность измерений-%D0%9E%D1%82%D0%BD%D0%BE%D1%81%D0%B8%D1%82%D0%B5%D0%BB%D1%8C%D0%BD%D0%B0%D1%8F %D0%BF%D0%BE%D0%B3%D1%80%D0%B5%D1%88%D0%BD%D0%BE%D1%81%D1%82%D1%8C. картинка Как учитывать погрешность измерений. картинка %D0%9E%D1%82%D0%BD%D0%BE%D1%81%D0%B8%D1%82%D0%B5%D0%BB%D1%8C%D0%BD%D0%B0%D1%8F %D0%BF%D0%BE%D0%B3%D1%80%D0%B5%D1%88%D0%BD%D0%BE%D1%81%D1%82%D1%8C.(1.4)

По закономерности появления погрешности измерения подразделяются на систематические, прогрессирующие, и случайные .

Систематическая погрешность – это погрешность измерения, остающаяся постоянной или закономерно изменяющейся при повторных измерениях одной и той же величины.

Прогрессирующая погрешность – это непредсказуемая погрешность, медленно меняющаяся во времени.

Систематические и прогрессирующие погрешности средств измерений вызываются:

Систематическая погрешность остается постоянной или закономерно изменяющейся при многократных измерениях одной и той же величины. Особенность систематической погрешности состоит в том, что она может быть полностью устранена введением поправок. Особенностью прогрессирующих погрешностей является то, что они могут быть скорректированы только в данный момент времени. Они требуют непрерывной коррекции.

Случайная погрешность – это погрешность измерения изменяется случайным образом. При повторных измерениях одной и той же величины. Случайные погрешности можно обнаружить только при многократных измерениях. В отличии от систематических погрешностей случайные нельзя устранить из результатов измерений.

По происхождению различают инструментальные и методические погрешности средств измерений.

Инструментальные погрешности — это погрешности, вызываемые особенностями свойств средств измерений. Они возникают вследствие недостаточно высокого качества элементов средств измерений. К данным погрешностям можно отнести изготовление и сборку элементов средств измерений; погрешности из-за трения в механизме прибора, недостаточной жесткости его элементов и деталей и др. Подчеркнем, что инструментальная погрешность индивидуальна для каждого средства измерений.

Методическая погрешность — это погрешность средства измерения, возникающая из-за несовершенства метода измерения, неточности соотношения, используемого для оценки измеряемой величины.

Погрешности средств измерений.

Абсолютная погрешность меры – это разность между номинальным ее значением и истинным (действительным) значением воспроизводимой ею величины:

Как учитывать погрешность измерений. %D0%90%D0%B1%D1%81%D0%BE%D0%BB%D1%8E%D1%82%D0%BD%D0%B0%D1%8F %D0%BF%D0%BE%D0%B3%D1%80%D0%B5%D1%88%D0%BD%D0%BE%D1%81%D1%82%D1%8C %D0%BC%D0%B5%D1%80%D1%8B. Как учитывать погрешность измерений фото. Как учитывать погрешность измерений-%D0%90%D0%B1%D1%81%D0%BE%D0%BB%D1%8E%D1%82%D0%BD%D0%B0%D1%8F %D0%BF%D0%BE%D0%B3%D1%80%D0%B5%D1%88%D0%BD%D0%BE%D1%81%D1%82%D1%8C %D0%BC%D0%B5%D1%80%D1%8B. картинка Как учитывать погрешность измерений. картинка %D0%90%D0%B1%D1%81%D0%BE%D0%BB%D1%8E%D1%82%D0%BD%D0%B0%D1%8F %D0%BF%D0%BE%D0%B3%D1%80%D0%B5%D1%88%D0%BD%D0%BE%D1%81%D1%82%D1%8C %D0%BC%D0%B5%D1%80%D1%8B.(1.5), где Xн – номинальное значение меры; Хд – действительное значение меры

Абсолютная погрешность измерительного прибора – это разность между показанием прибора и истинным (действительным) значением измеряемой величины:

Как учитывать погрешность измерений. %D0%90%D0%B1%D1%81%D0%BE%D0%BB%D1%8E%D1%82%D0%BD%D0%B0%D1%8F %D0%BF%D0%BE%D0%B3%D1%80%D0%B5%D1%88%D0%BD%D0%BE%D1%81%D1%82%D1%8C %D0%B8%D0%B7%D0%BC%D0%B5%D1%80%D0%B8%D1%82%D0%B5%D0%BB%D1%8C%D0%BD%D0%BE%D0%B3%D0%BE %D0%BF%D1%80%D0%B8%D0%B1%D0%BE%D1%80%D0%B0. Как учитывать погрешность измерений фото. Как учитывать погрешность измерений-%D0%90%D0%B1%D1%81%D0%BE%D0%BB%D1%8E%D1%82%D0%BD%D0%B0%D1%8F %D0%BF%D0%BE%D0%B3%D1%80%D0%B5%D1%88%D0%BD%D0%BE%D1%81%D1%82%D1%8C %D0%B8%D0%B7%D0%BC%D0%B5%D1%80%D0%B8%D1%82%D0%B5%D0%BB%D1%8C%D0%BD%D0%BE%D0%B3%D0%BE %D0%BF%D1%80%D0%B8%D0%B1%D0%BE%D1%80%D0%B0. картинка Как учитывать погрешность измерений. картинка %D0%90%D0%B1%D1%81%D0%BE%D0%BB%D1%8E%D1%82%D0%BD%D0%B0%D1%8F %D0%BF%D0%BE%D0%B3%D1%80%D0%B5%D1%88%D0%BD%D0%BE%D1%81%D1%82%D1%8C %D0%B8%D0%B7%D0%BC%D0%B5%D1%80%D0%B8%D1%82%D0%B5%D0%BB%D1%8C%D0%BD%D0%BE%D0%B3%D0%BE %D0%BF%D1%80%D0%B8%D0%B1%D0%BE%D1%80%D0%B0.(1.6), где Xп – показания прибора; Хд – действительное значение измеряемой величины.

Относительная погрешность меры или измерительного прибора – это отношение абсолютной погрешности меры или измерительного прибора к истинному

(действительному) значению воспроизводимой или измеряемой величины. Относительная погрешность меры или измерительного прибора может быть выражена в ( % ).

Как учитывать погрешность измерений. %D0%9E%D1%82%D0%BD%D0%BE%D1%81%D0%B8%D1%82%D0%B5%D0%BB%D1%8C%D0%BD%D0%B0%D1%8F %D0%BF%D0%BE%D0%B3%D1%80%D0%B5%D1%88%D0%BD%D0%BE%D1%81%D1%82%D1%8C %D0%BC%D0%B5%D1%80%D1%8B %D0%B8%D0%BB%D0%B8 %D0%B8%D0%B7%D0%BC%D0%B5%D1%80%D0%B8%D1%82%D0%B5%D0%BB%D1%8C%D0%BD%D0%BE%D0%B3%D0%BE %D0%BF%D1%80%D0%B8%D0%B1%D0%BE%D1%80%D0%B0. Как учитывать погрешность измерений фото. Как учитывать погрешность измерений-%D0%9E%D1%82%D0%BD%D0%BE%D1%81%D0%B8%D1%82%D0%B5%D0%BB%D1%8C%D0%BD%D0%B0%D1%8F %D0%BF%D0%BE%D0%B3%D1%80%D0%B5%D1%88%D0%BD%D0%BE%D1%81%D1%82%D1%8C %D0%BC%D0%B5%D1%80%D1%8B %D0%B8%D0%BB%D0%B8 %D0%B8%D0%B7%D0%BC%D0%B5%D1%80%D0%B8%D1%82%D0%B5%D0%BB%D1%8C%D0%BD%D0%BE%D0%B3%D0%BE %D0%BF%D1%80%D0%B8%D0%B1%D0%BE%D1%80%D0%B0. картинка Как учитывать погрешность измерений. картинка %D0%9E%D1%82%D0%BD%D0%BE%D1%81%D0%B8%D1%82%D0%B5%D0%BB%D1%8C%D0%BD%D0%B0%D1%8F %D0%BF%D0%BE%D0%B3%D1%80%D0%B5%D1%88%D0%BD%D0%BE%D1%81%D1%82%D1%8C %D0%BC%D0%B5%D1%80%D1%8B %D0%B8%D0%BB%D0%B8 %D0%B8%D0%B7%D0%BC%D0%B5%D1%80%D0%B8%D1%82%D0%B5%D0%BB%D1%8C%D0%BD%D0%BE%D0%B3%D0%BE %D0%BF%D1%80%D0%B8%D0%B1%D0%BE%D1%80%D0%B0.(1.7)

Приведенная погрешность измерительного прибора – отношение погрешности измерительного прибора к нормирующему значению. Нормирующие значение XN – это условно принятое значение, равное или верхнему пределу измерений, или диапазону измерений, или длине шкалы. Приведенная погрешность обычно выражается в ( % ).

Как учитывать погрешность измерений. %D0%9F%D1%80%D0%B8%D0%B2%D0%B5%D0%B4%D0%B5%D0%BD%D0%BD%D0%B0%D1%8F %D0%BF%D0%BE%D0%B3%D1%80%D0%B5%D1%88%D0%BD%D0%BE%D1%81%D1%82%D1%8C %D0%B8%D0%B7%D0%BC%D0%B5%D1%80%D0%B8%D1%82%D0%B5%D0%BB%D1%8C%D0%BD%D0%BE%D0%B3%D0%BE %D0%BF%D1%80%D0%B8%D0%B1%D0%BE%D1%80%D0%B0. Как учитывать погрешность измерений фото. Как учитывать погрешность измерений-%D0%9F%D1%80%D0%B8%D0%B2%D0%B5%D0%B4%D0%B5%D0%BD%D0%BD%D0%B0%D1%8F %D0%BF%D0%BE%D0%B3%D1%80%D0%B5%D1%88%D0%BD%D0%BE%D1%81%D1%82%D1%8C %D0%B8%D0%B7%D0%BC%D0%B5%D1%80%D0%B8%D1%82%D0%B5%D0%BB%D1%8C%D0%BD%D0%BE%D0%B3%D0%BE %D0%BF%D1%80%D0%B8%D0%B1%D0%BE%D1%80%D0%B0. картинка Как учитывать погрешность измерений. картинка %D0%9F%D1%80%D0%B8%D0%B2%D0%B5%D0%B4%D0%B5%D0%BD%D0%BD%D0%B0%D1%8F %D0%BF%D0%BE%D0%B3%D1%80%D0%B5%D1%88%D0%BD%D0%BE%D1%81%D1%82%D1%8C %D0%B8%D0%B7%D0%BC%D0%B5%D1%80%D0%B8%D1%82%D0%B5%D0%BB%D1%8C%D0%BD%D0%BE%D0%B3%D0%BE %D0%BF%D1%80%D0%B8%D0%B1%D0%BE%D1%80%D0%B0.(1.8)

Основная – это погрешность средства измерений, используемого в нормальных условиях, которые обычно определены в нормативно-технических документах на данное средство измерений.

Дополнительная – это изменение погрешности средства измерений вследствии отклонения влияющих величин от нормальных значений.

Статическая – это погрешность средства измерений, используемого для измерения постоянной величины. Если измеряемая величина является функцией времени, то вследствие инерционности средств измерений возникает составляющая общей погрешности, называется динамической погрешностью средств измерений.

Также существуют систематические и случайные погрешности средств измерений они аналогичны с такими же погрешностями измерений.

Факторы влияющие на погрешность измерений.

Погрешности возникают по разным причинам: это могут быть ошибки экспериментатора или ошибки из-за применения прибора не по назначению и т.д. Существует ряд понятий которые определяют факторы влияющие на погрешность измерений

Вариация показаний прибора – это наибольшая разность показаний полученных при прямом и обратном ходе при одном и том же действительном значении измеряемой величины и неизменных внешних условиях.

Класс точности прибора – это обобщенная характеристика средств измерений (прибора), определяемая пределами допускаемых основной и дополнительных погрешностей, а также другими свойствами средств измерений, влияющих на точность, значение которой устанавливаются на отдельные виды средств измерений.

Классы точности прибора устанавливают при выпуске, градуируя его по образцовому прибору в нормальных условиях.

Прецизионность — показывает, как точно или отчетливо можно произвести отсчет. Она определяется, тем насколько близки друг к другу результаты двух идентичных измерений.

Разрешение прибора — это наименьшее изменение измеряемого значения, на которое прибор будет реагировать.

Диапазон прибора — определяется минимальным и максимальным значением входного сигнала, для которого он предназначен.

Полоса пропускания прибора — это разность между минимальной и максимальной частотой, для которых он предназначен.

Чувствительность прибора — определяется, как отношение выходного сигнала или показания прибора к входному сигналу или измеряемой величине.

Шумы — любой сигнал не несущий полезной информации.

Источник

Оценка погрешностей измерений при выполнении лабораторных работ по физике

Как учитывать погрешность измерений. 151905240811e8tc. Как учитывать погрешность измерений фото. Как учитывать погрешность измерений-151905240811e8tc. картинка Как учитывать погрешность измерений. картинка 151905240811e8tc.

ОЦЕНКА ПОГРЕШНОСТЕЙ ИЗМЕРЕНИЙ ПРИ ВЫПОЛНЕНИИ

ЛАБОРАТОРНЫХ РАБОТ ПО ФИЗИКЕ

Выполнение лабораторных работ связано с измерением различных физических величин и последующей обработкой полученных результатов. Поскольку не существует абсолютно точных приборов и других средств измерения, следовательно, не бывает и абсолютно точных результатов измерения. Погрешности возникают при любых измерениях, и только правильная оценка погрешностей проведенных измерений и расчетов позволяет выяснить степень достоверности полученных результатов.

Абсолютная погрешность измерения

Как учитывать погрешность измерений. image001 115. Как учитывать погрешность измерений фото. Как учитывать погрешность измерений-image001 115. картинка Как учитывать погрешность измерений. картинка image001 115.

Итак, абсолютная погрешность показывает, насколько неизвестное экспериментатору истинное значение измеряемой величины может отличаться от измеренного значения.

Результат измерения с учетом абсолютной погрешности записывают так:

Как учитывать погрешность измерений. image002 93. Как учитывать погрешность измерений фото. Как учитывать погрешность измерений-image002 93. картинка Как учитывать погрешность измерений. картинка image002 93.

Относительная погрешность измерения

Значение абсолютной погрешности все же не позволяет в полной мере оценить качество наших измерений. Если, например, в результате измерений установлено, что длина стола с учетом абсолютной погрешности равна (100± 1) см, а толщина его крышки равна (2 ± 1) см, то качество измерений в первом случае выше (хотя граница абсолютной погрешности измерений в обоих случаях одинакова). Качество измерений характеризуется относительной погрешностью ε, равной отношению абсолютной погрешности ΔX к значению величины Xпр, получаемой в результате измерения:

Как учитывать погрешность измерений. image003 76. Как учитывать погрешность измерений фото. Как учитывать погрешность измерений-image003 76. картинка Как учитывать погрешность измерений. картинка image003 76..

При выполнении лабораторных работ выделяют следующие виды погрешностей: погрешности прямых измерений; погрешности косвенных измерений; случайные погрешности и систематические погрешности.

Погрешности прямых измерений

Прямое измерение — это такое измерение, при котором его результат определяется непосредственно в процессе считывания со шкалы прибора. В нашем первом примере с определением диаметра стержня речь шла как раз о таком измерении. Погрешность прямого измерения обозначается значком Δ. Если вы умеете правильно пользоваться измерительным прибором, то погрешность прямого измерения зависит только от его качества и равна сумме инструментальной погрешности прибора (Δ и) и погрешности отсчета (Δ 9). Таким образом: Δ = Δ и + Δ о

Инструментальная погрешность измерительного прибора (Δи) определяется на заводе-изготовителе. Абсолютные инструментальные погрешности измерительных приборов, чаще всего используемых для проведения лабораторных работ, приведены в таблице 1.

Как учитывать погрешность измерений. image004 66. Как учитывать погрешность измерений фото. Как учитывать погрешность измерений-image004 66. картинка Как учитывать погрешность измерений. картинка image004 66.1 мм

Как учитывать погрешность измерений. image004 66. Как учитывать погрешность измерений фото. Как учитывать погрешность измерений-image004 66. картинка Как учитывать погрешность измерений. картинка image004 66.0,2 мм

Линейка инструментальная (стальная)

Как учитывать погрешность измерений. image004 66. Как учитывать погрешность измерений фото. Как учитывать погрешность измерений-image004 66. картинка Как учитывать погрешность измерений. картинка image004 66.0,1 мм

Как учитывать погрешность измерений. image004 66. Как учитывать погрешность измерений фото. Как учитывать погрешность измерений-image004 66. картинка Как учитывать погрешность измерений. картинка image004 66.0,5 см

Как учитывать погрешность измерений. image004 66. Как учитывать погрешность измерений фото. Как учитывать погрешность измерений-image004 66. картинка Как учитывать погрешность измерений. картинка image004 66.0,25 см

Как учитывать погрешность измерений. image004 66. Как учитывать погрешность измерений фото. Как учитывать погрешность измерений-image004 66. картинка Как учитывать погрешность измерений. картинка image004 66.1 мл

Как учитывать погрешность измерений. image004 66. Как учитывать погрешность измерений фото. Как учитывать погрешность измерений-image004 66. картинка Как учитывать погрешность измерений. картинка image004 66.0,05 мм

Как учитывать погрешность измерений. image004 66. Как учитывать погрешность измерений фото. Как учитывать погрешность измерений-image004 66. картинка Как учитывать погрешность измерений. картинка image004 66.0,005 мм

Как учитывать погрешность измерений. image004 66. Как учитывать погрешность измерений фото. Как учитывать погрешность измерений-image004 66. картинка Как учитывать погрешность измерений. картинка image004 66.0,05 Н

Как учитывать погрешность измерений. image004 66. Как учитывать погрешность измерений фото. Как учитывать погрешность измерений-image004 66. картинка Как учитывать погрешность измерений. картинка image004 66.0,01 с

Как учитывать погрешность измерений. image004 66. Как учитывать погрешность измерений фото. Как учитывать погрешность измерений-image004 66. картинка Как учитывать погрешность измерений. картинка image004 66.3 мм. рт. ст.

Как учитывать погрешность измерений. image004 66. Как учитывать погрешность измерений фото. Как учитывать погрешность измерений-image004 66. картинка Как учитывать погрешность измерений. картинка image004 66.1оС

Как учитывать погрешность измерений. image004 66. Как учитывать погрешность измерений фото. Как учитывать погрешность измерений-image004 66. картинка Как учитывать погрешность измерений. картинка image004 66.0,5оС

Как учитывать погрешность измерений. image004 66. Как учитывать погрешность измерений фото. Как учитывать погрешность измерений-image004 66. картинка Как учитывать погрешность измерений. картинка image004 66.0,05 А

Как учитывать погрешность измерений. image004 66. Как учитывать погрешность измерений фото. Как учитывать погрешность измерений-image004 66. картинка Как учитывать погрешность измерений. картинка image004 66.0,15 В

Погрешность отсчета измерительного прибора (Δ о) связана с тем, что указатель прибора не всегда точно совпадает с делениями шкалы. В этом случае погрешность отсчета не превосходит половины цены деления шкалы.

Учитывать погрешность отсчета надо только в тех случаях, когда указатель прибора при измерении находится между нанесенными на шкалу прибора делениями. Не имеет смысла учитывать, погрешности отсчета у цифровых измерительных приборов.

Одновременно учитывать обе составляющие погрешности прямого измерения следует лишь в том случае, если их значения близки друг к другу. Любым из этих слагаемых можно пренебречь, если оно не превосходит одной трети или одной четверти второго. В этом состоит так называемое правило «ничтожных погрешностей«.

ПОГРЕШНОСТИ КОСВЕННЫХ ИЗМЕРЕНИЙ

Если результат эксперимента определяется на основе расчетов, то измерения называются косвенными. Например, при определении импульса тела p = mv, скорости равноускоренного движении V = V0 + at и т. п. Однако нам не удастся подсчитать погрешность полученного результата косвенных измерений так же просто, как при проведении прямых измерениях.

При расчете погрешности результатов косвенных измерений нам придется учитывать, как выглядит формула, по которой производился расчет искомой величины. В теории погрешностей доказывается, как это можно сделать в общем виде. Мы же воспользуемся набором готовых формул для вычисления относительной погрешности результатов косвенных измерений. Формулы расчета относительных погрешностей для различных случаев приведены в таблице 3.

Как пользоваться этой таблицей?

Как учитывать погрешность измерений. image006 50. Как учитывать погрешность измерений фото. Как учитывать погрешность измерений-image006 50. картинка Как учитывать погрешность измерений. картинка image006 50.

Как учитывать погрешность измерений. image007 47. Как учитывать погрешность измерений фото. Как учитывать погрешность измерений-image007 47. картинка Как учитывать погрешность измерений. картинка image007 47.

Как учитывать погрешность измерений. image008 50. Как учитывать погрешность измерений фото. Как учитывать погрешность измерений-image008 50. картинка Как учитывать погрешность измерений. картинка image008 50.

Как учитывать погрешность измерений. image009 47. Как учитывать погрешность измерений фото. Как учитывать погрешность измерений-image009 47. картинка Как учитывать погрешность измерений. картинка image009 47.

Как учитывать погрешность измерений. image010 49. Как учитывать погрешность измерений фото. Как учитывать погрешность измерений-image010 49. картинка Как учитывать погрешность измерений. картинка image010 49.

Как учитывать погрешность измерений. image009 47. Как учитывать погрешность измерений фото. Как учитывать погрешность измерений-image009 47. картинка Как учитывать погрешность измерений. картинка image009 47.

Как учитывать погрешность измерений. image011 43. Как учитывать погрешность измерений фото. Как учитывать погрешность измерений-image011 43. картинка Как учитывать погрешность измерений. картинка image011 43.

Как учитывать погрешность измерений. image012 39. Как учитывать погрешность измерений фото. Как учитывать погрешность измерений-image012 39. картинка Как учитывать погрешность измерений. картинка image012 39.

Как учитывать погрешность измерений. image013 37. Как учитывать погрешность измерений фото. Как учитывать погрешность измерений-image013 37. картинка Как учитывать погрешность измерений. картинка image013 37.

Как учитывать погрешность измерений. image014 36. Как учитывать погрешность измерений фото. Как учитывать погрешность измерений-image014 36. картинка Как учитывать погрешность измерений. картинка image014 36.

Как учитывать погрешность измерений. image015 34. Как учитывать погрешность измерений фото. Как учитывать погрешность измерений-image015 34. картинка Как учитывать погрешность измерений. картинка image015 34.

Как учитывать погрешность измерений. image016 33. Как учитывать погрешность измерений фото. Как учитывать погрешность измерений-image016 33. картинка Как учитывать погрешность измерений. картинка image016 33.

Как учитывать погрешность измерений. image017 30. Как учитывать погрешность измерений фото. Как учитывать погрешность измерений-image017 30. картинка Как учитывать погрешность измерений. картинка image017 30.

Как учитывать погрешность измерений. image018 26. Как учитывать погрешность измерений фото. Как учитывать погрешность измерений-image018 26. картинка Как учитывать погрешность измерений. картинка image018 26.

Как учитывать погрешность измерений. image019 28. Как учитывать погрешность измерений фото. Как учитывать погрешность измерений-image019 28. картинка Как учитывать погрешность измерений. картинка image019 28.

Как учитывать погрешность измерений. image020 29. Как учитывать погрешность измерений фото. Как учитывать погрешность измерений-image020 29. картинка Как учитывать погрешность измерений. картинка image020 29.

Как учитывать погрешность измерений. image021 25. Как учитывать погрешность измерений фото. Как учитывать погрешность измерений-image021 25. картинка Как учитывать погрешность измерений. картинка image021 25.

Как учитывать погрешность измерений. image022 24. Как учитывать погрешность измерений фото. Как учитывать погрешность измерений-image022 24. картинка Как учитывать погрешность измерений. картинка image022 24.

Пусть, например, некоторая физическая величина х рассчитывается по формуле:

Как учитывать погрешность измерений. image023 25. Как учитывать погрешность измерений фото. Как учитывать погрешность измерений-image023 25. картинка Как учитывать погрешность измерений. картинка image023 25..

Значения k, m и p найдены прямыми измерениями во время проведения эксперимента. Их абсолютные погрешности соответственно равны Как учитывать погрешность измерений. image024 23. Как учитывать погрешность измерений фото. Как учитывать погрешность измерений-image024 23. картинка Как учитывать погрешность измерений. картинка image024 23.. Подставляя полученные значения в формулу, получим приближенное значение Как учитывать погрешность измерений. image025 23. Как учитывать погрешность измерений фото. Как учитывать погрешность измерений-image025 23. картинка Как учитывать погрешность измерений. картинка image025 23..

На первый взгляд может показаться, что такой формулы в таблице нет. При более внимательном анализе ситуации заметим, что в нашем случае искомое значение находится как отношение двух величин k + m = А и р = В, поэтому нам можно воспользоваться формулой Х = А : В.

В нашем случае из таблицы 3 имеем для отношения А : В: Как учитывать погрешность измерений. image027 18. Как учитывать погрешность измерений фото. Как учитывать погрешность измерений-image027 18. картинка Как учитывать погрешность измерений. картинка image027 18.или Как учитывать погрешность измерений. image028 16. Как учитывать погрешность измерений фото. Как учитывать погрешность измерений-image028 16. картинка Как учитывать погрешность измерений. картинка image028 16.

Из этой же таблицы мы можем узнать, как рассчитать относительную погрешность суммы: Как учитывать погрешность измерений. image029 18. Как учитывать погрешность измерений фото. Как учитывать погрешность измерений-image029 18. картинка Как учитывать погрешность измерений. картинка image029 18.. Следовательно, Как учитывать погрешность измерений. image030 15. Как учитывать погрешность измерений фото. Как учитывать погрешность измерений-image030 15. картинка Как учитывать погрешность измерений. картинка image030 15..

Теперь можно найти значение границе абсолютной погрешности результатов косвенных измерений, которая рассчитывается несколько иначе, чем при проведении прямых измерений. Для вычисления абсолютной погрешности результатов косвенных обычно измерений используют формулу для расчета относительной погрешности

Как учитывать погрешность измерений. image003 76. Как учитывать погрешность измерений фото. Как учитывать погрешность измерений-image003 76. картинка Как учитывать погрешность измерений. картинка image003 76..

Откуда Как учитывать погрешность измерений. image031 15. Как учитывать погрешность измерений фото. Как учитывать погрешность измерений-image031 15. картинка Как учитывать погрешность измерений. картинка image031 15...

Окончательный результат косвенных измерений записывают в виде: Как учитывать погрешность измерений. image002 93. Как учитывать погрешность измерений фото. Как учитывать погрешность измерений-image002 93. картинка Как учитывать погрешность измерений. картинка image002 93..

Использование таблиц, построение графиков, сравнение

результатов экспериментов с учетом погрешностей.

ЗАПИСЬ ОКОНЧАТЕЛЬНЫХ РЕЗУЛЬТАТОВ

Как учитывать погрешность измерений. image032 15. Как учитывать погрешность измерений фото. Как учитывать погрешность измерений-image032 15. картинка Как учитывать погрешность измерений. картинка image032 15.

При построении графиков следует иметь в виду, что по результатам опытов мы получаем не точку, а прямоугольник со сторонами х и y (рис. 3). Поэтому при построении графиков необходимо проводить плавную линию так, чтобы по разные стороны от кривой оказалось примерно одинаковое число точек.

Как учитывать погрешность измерений. image033 13. Как учитывать погрешность измерений фото. Как учитывать погрешность измерений-image033 13. картинка Как учитывать погрешность измерений. картинка image033 13.

Погрешность измерения следует также учитывать, если вы хотите убедиться в достоверности измерения физической величины, действительное значение которой известно. В этом случае надо убедиться в принадлежности известного значения физической величины интервалу Как учитывать погрешность измерений. image034 11. Как учитывать погрешность измерений фото. Как учитывать погрешность измерений-image034 11. картинка Как учитывать погрешность измерений. картинка image034 11.(см. рис.4.).

Как учитывать погрешность измерений. image035 11. Как учитывать погрешность измерений фото. Как учитывать погрешность измерений-image035 11. картинка Как учитывать погрешность измерений. картинка image035 11.

Если вы проверяете закон А = В, то результат проверки будет достоверен лишь при наличии общих точек у интервалов Как учитывать погрешность измерений. image036 12. Как учитывать погрешность измерений фото. Как учитывать погрешность измерений-image036 12. картинка Как учитывать погрешность измерений. картинка image036 12., то есть при частичном или полном перекрывании этих интервалов

После того, как будет вычислена граница абсолютной погрешности, ее значение обычно округляется до одной значащей цифры. Затем результат измерения записывается с числом десятичных знаков, не большим, чем их имеется в абсолютной погрешности. Например, запись V = 0,56032 ± 0,028 м/с плоха. Из такой записи следует, что мы как то сумели рассчитать численное значение скорости в тысячу раз точнее, чем позволяли нам приборы. (Действительно, ответ дан с точностью до 5-го знака после запятой, а погрешность имеется уже во втором знаке после запятой, что полностью дискредитирует как сам результат, так и человека его записавшего).

В приведенном примере следует округлить значение абсолютной погрешности до одной значащей цифры: ΔV = 0,03 м/с, а в приближенном значении скорости оставить два знака после запятой (столько же, сколько и в абсолютной погрешности): V = 0,56 м/с. Правильная запись ответа должна выглядеть так: V = 0,56 ± 0,03 м/с.

Погрешности при взвешивании возникают не только из-за погрешностей гирь, но еще и потому, что точность показания весов зависит от нагрузки на них.

График зависимости погрешности весов (ВТ2-200) от нагрузки приведен на рисунке 2,.

А погрешности гирь из набора Г4-210 для лабораторных работ приведены в таблице 2.

10мг; 20мг; 50мг; 100мг

Как учитывать погрешность измерений. image037 12. Как учитывать погрешность измерений фото. Как учитывать погрешность измерений-image037 12. картинка Как учитывать погрешность измерений. картинка image037 12.1 мг

Как учитывать погрешность измерений. image037 12. Как учитывать погрешность измерений фото. Как учитывать погрешность измерений-image037 12. картинка Как учитывать погрешность измерений. картинка image037 12.2 мг

Как учитывать погрешность измерений. image037 12. Как учитывать погрешность измерений фото. Как учитывать погрешность измерений-image037 12. картинка Как учитывать погрешность измерений. картинка image037 12.3 мг

Как учитывать погрешность измерений. image037 12. Как учитывать погрешность измерений фото. Как учитывать погрешность измерений-image037 12. картинка Как учитывать погрешность измерений. картинка image037 12.4 мг

Как учитывать погрешность измерений. image037 12. Как учитывать погрешность измерений фото. Как учитывать погрешность измерений-image037 12. картинка Как учитывать погрешность измерений. картинка image037 12.6 мг

Как учитывать погрешность измерений. image037 12. Как учитывать погрешность измерений фото. Как учитывать погрешность измерений-image037 12. картинка Как учитывать погрешность измерений. картинка image037 12.8 мг

Как учитывать погрешность измерений. image037 12. Как учитывать погрешность измерений фото. Как учитывать погрешность измерений-image037 12. картинка Как учитывать погрешность измерений. картинка image037 12.12 мг

Как учитывать погрешность измерений. image037 12. Как учитывать погрешность измерений фото. Как учитывать погрешность измерений-image037 12. картинка Как учитывать погрешность измерений. картинка image037 12.20 мг

Как учитывать погрешность измерений. image037 12. Как учитывать погрешность измерений фото. Как учитывать погрешность измерений-image037 12. картинка Как учитывать погрешность измерений. картинка image037 12.30 мг

Как учитывать погрешность измерений. image037 12. Как учитывать погрешность измерений фото. Как учитывать погрешность измерений-image037 12. картинка Как учитывать погрешность измерений. картинка image037 12.40 мг

Как учитывать погрешность измерений. image038 12. Как учитывать погрешность измерений фото. Как учитывать погрешность измерений-image038 12. картинка Как учитывать погрешность измерений. картинка image038 12.

Таким образом, при использовании весов приходиться учитывать:

1) погрешность весов Как учитывать погрешность измерений. image039 12. Как учитывать погрешность измерений фото. Как учитывать погрешность измерений-image039 12. картинка Как учитывать погрешность измерений. картинка image039 12.;

2) погрешность гирь и разновесов Как учитывать погрешность измерений. image040 9. Как учитывать погрешность измерений фото. Как учитывать погрешность измерений-image040 9. картинка Как учитывать погрешность измерений. картинка image040 9.;

3) погрешность подбора гирь Как учитывать погрешность измерений. image041 10. Как учитывать погрешность измерений фото. Как учитывать погрешность измерений-image041 10. картинка Как учитывать погрешность измерений. картинка image041 10..

Погрешность подбора гирь аналогична погрешности отсчета и равна половине массы наименьшей гири, лежащей на весах (либо выводящей ее из равновесия). Поэтому при прямом измерении массы на весах: Как учитывать погрешность измерений. image042 10. Как учитывать погрешность измерений фото. Как учитывать погрешность измерений-image042 10. картинка Как учитывать погрешность измерений. картинка image042 10.=Как учитывать погрешность измерений. image039 12. Как учитывать погрешность измерений фото. Как учитывать погрешность измерений-image039 12. картинка Как учитывать погрешность измерений. картинка image039 12.+Как учитывать погрешность измерений. image040 9. Как учитывать погрешность измерений фото. Как учитывать погрешность измерений-image040 9. картинка Как учитывать погрешность измерений. картинка image040 9.+Как учитывать погрешность измерений. image041 10. Как учитывать погрешность измерений фото. Как учитывать погрешность измерений-image041 10. картинка Как учитывать погрешность измерений. картинка image041 10..

Пусть, например, взвешиваемое тело уравновешено на весах при помощи гирь, номинальные значения которых (указанные на гирях) равны 50 г, 20 г, 100 мг и выводятся из равновесия разновесом в 10 мг. Определим абсолютную погрешность взвешивания. По графику зависимости погрешности весов от нагрузки найдем погрешность весов Как учитывать погрешность измерений. image039 12. Как учитывать погрешность измерений фото. Как учитывать погрешность измерений-image039 12. картинка Как учитывать погрешность измерений. картинка image039 12.. Она равна примерно 25 мг (для груза массой

70 г). Погрешность гирь найдем по таблице 2.

Как учитывать погрешность измерений. image040 9. Как учитывать погрешность измерений фото. Как учитывать погрешность измерений-image040 9. картинка Как учитывать погрешность измерений. картинка image040 9.=30+20+1=51 мг. Погрешность подбора будет равна Как учитывать погрешность измерений. image041 10. Как учитывать погрешность измерений фото. Как учитывать погрешность измерений-image041 10. картинка Как учитывать погрешность измерений. картинка image041 10.=10 мг/2=5 мг.

Поэтому граница погрешности при взвешивании будет равна: Как учитывать погрешность измерений. image042 10. Как учитывать погрешность измерений фото. Как учитывать погрешность измерений-image042 10. картинка Как учитывать погрешность измерений. картинка image042 10.=25+51+5=81 мг. Следовательно, m = 70,10Как учитывать погрешность измерений. image037 12. Как учитывать погрешность измерений фото. Как учитывать погрешность измерений-image037 12. картинка Как учитывать погрешность измерений. картинка image037 12.0,081 г.

Инструментальные погрешности электроизмерительных приборов

Если при выполнении работы приходится пользоваться электроизмерительными приборами, не указанными в таблице 1, то инструментальную погрешность прибора все равно можно определить. Каждый электроизмерительный прибор в зависимости от качества изготовления имеет определенный класс точности. Значение класса точности наносится на его шкалу (изображается на шкале отдельно стоящим числом или числом в кружке), который позволяет определить погрешность этого прибора.

Если класс точности миллиамперметра 4, а предел измерения этого прибора равен 250 мА; то абсолютная инструментальная погрешность прибора составляет 4% от 250 мА, т. е. Как учитывать погрешность измерений. image043 9. Как учитывать погрешность измерений фото. Как учитывать погрешность измерений-image043 9. картинка Как учитывать погрешность измерений. картинка image043 9.=10 мА.

Необходимо иметь ввиду, что во всех наших оценках границ погрешностей мы не учитывали, что существуют так называемые систематические погрешности. Эти погрешности возникают по разным причинам: из-за влияния измерительного прибора на процессы в измерительной установке; недостаточной корректности методики измерения; неправильных показаний прибора (например из-за первоначального смещения стрелки прибора от нулевого деления шкалы) и по другим причинам.

В школьном эксперименте устранить систематические погрешности довольно трудно из-за того, что ограничен выбор средств измерения, и они имеют не очень высокое качество. Поэтому при подготовке и проведении практических работ УЧИТЕЛЮ приходится продумывать методику проведения эксперимента и тщательно подбирать соответствующие приборы для сведения систематических погрешностей к минимуму. Поэтому будем считать систематические ошибки не существенными и учитывать их при расчете погрешности (во всяком случае пока) не будем.

Часто при проведении повторных измерений какой-либо величины получаются несколько различные результаты, отличающиеся друг от друга на величину большую, чем сумма погрешностей прибора и отсчета. Это вызвано действием случайных факторов, которые невозможно устранить в процессе эксперимента.

Допустим, что мы определяем дальность полета шарика, пущенного из баллистического пистолета в горизонтальном направлении. Даже при неизменных условиях поведения эксперимента шарик не будет попадать в одну и ту же точку поверхности стола. Это связано с тем, что шарик имеет не совсем правильную форму, так как на боек ударного механизма при движении в канале пистолета действует сила трения, изменяющаяся по величине, положение пистолета в пространстве не совсем жестко зафиксировано и т. д.

Такой «разброс» результатов наблюдается практически всегда при выполнении серии экспериментов. В этом случае за приближенное значение измеряемой величины берут среднее арифметическое.

Как учитывать погрешность измерений. image044 10. Как учитывать погрешность измерений фото. Как учитывать погрешность измерений-image044 10. картинка Как учитывать погрешность измерений. картинка image044 10.

Причем, чем больше будет проведено экспериментов, тем ближе будет среднее арифметическое к истинному значению измеряемой величины.

В теории расчета погрешностей показывается, что Как учитывать погрешность измерений. image046 7. Как учитывать погрешность измерений фото. Как учитывать погрешность измерений-image046 7. картинка Как учитывать погрешность измерений. картинка image046 7., где Как учитывать погрешность измерений. image047 7. Как учитывать погрешность измерений фото. Как учитывать погрешность измерений-image047 7. картинка Как учитывать погрешность измерений. картинка image047 7.— значения физической величины в 1, 2. n опыте

Погрешность среднего арифметического значения определяемой величины.

Когда мы находим среднее арифметическое значение некоторой величины по результатам серии опытов, то естественно считать, что оно имеет меньшее отклонение от истинного значения, чем каждый отдельный опыт серии. Другими словами, погрешность среднего меньше, чем погрешность каждого опыта серии. В теории погрешностей доказывается, что граница погрешности среднего значения равна:

Как учитывать погрешность измерений. image048 9. Как учитывать погрешность измерений фото. Как учитывать погрешность измерений-image048 9. картинка Как учитывать погрешность измерений. картинка image048 9..

Как учитывать погрешность измерений. image049 7. Как учитывать погрешность измерений фото. Как учитывать погрешность измерений-image049 7. картинка Как учитывать погрешность измерений. картинка image049 7..

Очевидно, что число опытов имеет смысл выбрать таким, чтобы случайная погрешность среднего сравнялась с погрешностью прибора, либо стала меньше ее. Дальнейшее увеличение числа измерений теряет смысл, так как не увеличивает точность получаемого результата: Как учитывать погрешность измерений. image050 7. Как учитывать погрешность измерений фото. Как учитывать погрешность измерений-image050 7. картинка Как учитывать погрешность измерений. картинка image050 7., где Как учитывать погрешность измерений. image051 9. Как учитывать погрешность измерений фото. Как учитывать погрешность измерений-image051 9. картинка Как учитывать погрешность измерений. картинка image051 9.— граница погрешности измерительного прибора.

Если нет возможности по каким-либо причинам провести достаточное количество опытов (т. е. не удается сделать погрешность среднего равной погрешности приборов), то результат должен быть взят в виде: Как учитывать погрешность измерений. image052 8. Как учитывать погрешность измерений фото. Как учитывать погрешность измерений-image052 8. картинка Как учитывать погрешность измерений. картинка image052 8., где Как учитывать погрешность измерений. image053 5. Как учитывать погрешность измерений фото. Как учитывать погрешность измерений-image053 5. картинка Как учитывать погрешность измерений. картинка image053 5.— граница случайной погрешности среднего.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *