известны такие виды растров как
Типографский растр: виды и типы растров
Автотипный растр
Типы растров: а) двухлинейный, б) ромбический, в) корешковый, г) шахматный.
В автотипном растре наиболее употребительны следующие линиатуры (количество прямых параллельных линий растра на один линейный сантиметр): 24, 30, 34, 40, 48, 54, 60. Растр с более высокой линиатурой (80, 100 и более) применяется крайне редко. Растр укрепляют в рамке, снабженной градусной шкалой, служащей для установки растра под определенным углом.
Зависимость изображения от линиатуры
На относительную величину точек влияют и другие факторы: длительность экспозиции, расстояние от растра до фотопленки, величина диаметра действующего отверстия объектива и др.
Точка на негативе имеет вид черного ядра, окруженного более светлым ореолом. В дальнейшем, при обработке негатива химическими растворами, если ореол усиливают, то точка становится больше, если ослабляют (отбеливают), то она уменьшается.
Фотографирование оригинала производится обычно через три диафрагмы:
Применяются также и другие технологические приемы, не требующие использования трех диафрагм.
Применение растра различной линиатуры регламентировано специальными инструкциями и устанавливается соответственно характеру издания и бумаги, на которой оно будет печататься.
Растр глубокой печати
Увеличенная схема растра глубокой печати
Применяемый в глубокой ракельной печати растр отличается от автотипного тем, что в нем прозрачны перекрещивающиеся линии, а промежутки между ними непрозрачны (черные). Отношение толщины линии к толщине промежутков бывает различным: 1:3, 1:3,5, 1:4. Применение того или иного растра зависит от типа издания, тиража и характера бумаги. При копировании свет проходит через прозрачные линии и задубливает светочувствительный слой. Назначение этого растра совсем иное, чем в автотипии: он служит только для создания на рабочей поверхности печатной формы опорных линий, по которым во время печатания скользит ракель.
Контактный растр
У этого растра вместо линий имеются систематически расположенные тоновые точки, состоящие из участков различной плотности. Наибольшую плотность точка имеет в середине (ядро) и постепенно убывает к краям. Промежутки между точками прозрачны. Этот растр применяется с той же целью, что и автотипный.
При фотографировании тонового изображения контактный растр должен быть плотно прижат к фотопленке (отсюда его название).
Схема образования растровых точек на негативе при фотографировании тонового изображения через контактный растр.
Контактный растр чаще всего изготовляют копированием автотипного растра на фотопленку, помещенную на некотором расстоянии от него, благодаря чему получаются тоновые точки. Такой метод имеет ряд преимуществ перед автотипным.
Один из распространенных технологических вариантов применения контактного растра состоит в том, что его помещают на подготовленную для копирования пластину (изготовляемую печатную форму), поверх него кладут полутоновый (безрастровый) негатив, то есть негатив, полученный фотографированием оригинала. В этом случае разложение тонового изображения на растровые точки происходит во время копирования, а не при фотографировании оригинала.
Однолинейный растр
Этот тип растра с прямыми параллельными линиями служит для изготовления на фотопленке (при репродуцировании многокрасочных изображений) однолинейной сетки для последующего получения на печатной форме плоской печати разных сеток: линейной, крестовой, точечной.
Оттиски с печатных форм, изготовленных с помощью растра, создают иллюзию того, что изображение является тоновым, хотя по существу оно штриховое, так как состоит из точек, штрихов, либо линий (в этом смысле, например, автотипию называют тоновым изображением). Указанная иллюзия возникает, когда размер штриховых элементов и промежутков между ними меньше разрешающей способности глаза.
Виды растров
Растр – это порядок расположения точек (растровых элементов). На рис. 2. изображен растр, элементами которого являются квадраты, такой растр называется прямоугольным, именно такие растры наиболее часто используются.
Хотя возможно использование в качестве растрового элемента фигуры другой формы: треугольника, шестиугольника; соответствующего следующим требованиям:
− все фигуры должны быть одинаковые;
− должны полностью покрывать плоскость без наезжания и дырок.
Так в качестве растрового элемента возможно использование равностороннего треугольника рис. 3, правильного шестиугольника (гексаэдра) рис. 4. Можно строить растры, используя неправильные многоугольники, но практический смысл в подобных растрах отсутствует.
Рис. 3. Треугольный растр
Рассмотрим способы построения линий в прямоугольном и гексагональном растре.
Рис. 4. «Гексагональный растр»
В прямоугольном растре построение линии осуществляется двумя способами:
1) Результат – восьмисвязная линия. Соседние пиксели линии могут находится в одном из восьми возможных (см. рис. 5а) положениях. Недостаток – слишком тонкая линия при угле 45°.
2) Результат – четырехсвязная линия. Соседние пиксели линии могут находится в одном из четырех возможных (см. рис. 5б) положениях. Недостаток – избыточно толстая линия при угле 45°.
Рис. 5. Построение линии в прямоугольном растре
В гексагональном растре линии шестисвязные (см. рис. 6) такие линии более стабильны по ширине, т.е. дисперсия ширины линии меньше, чем в квадратном растре.
Рис. 6. Построение линии в гексагональном растре
Одним из способов оценки растра является передача по каналу связи кодированного, с учетом используемого растра, изображения с последующим восстановлением и визуальным анализом достигнутого качества. Экспериментально и математически доказано, что гексагональный растр лучше, т.к. обеспечивает наименьшее отклонение от оригинала. Но разница не велика.
Моделирование гексагонального растра. Возможно построение гексагонального растра на основе квадратного. Для этого гексаугольник представляют в виде прямоугольника.
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
Виды растров
Растр – это порядок расположения точек (растровых элементов). На рис. 2. изображен растр, элементами которого являются квадраты, такой растр называется прямоугольным, именно такие растры наиболее часто используются.
Хотя возможно использование в качестве растрового элемента фигуры другой формы: треугольника, шестиугольника; соответствующего следующим требованиям:
− все фигуры должны быть одинаковые;
− должны полностью покрывать плоскость без наезжания и дырок.
Так в качестве растрового элемента возможно использование равностороннего треугольника рис. 3, правильного шестиугольника (гексаэдра) рис. 4. Можно строить растры, используя неправильные многоугольники, но практический смысл в подобных растрах отсутствует.
Рис. 3. Треугольный растр
Рассмотрим способы построения линий в прямоугольном и гексагональном растре.
Рис. 4. «Гексагональный растр»
В прямоугольном растре построение линии осуществляется двумя способами:
1) Результат – восьмисвязная линия. Соседние пиксели линии могут находится в одном из восьми возможных (см. рис. 5а) положениях. Недостаток – слишком тонкая линия при угле 45°.
2) Результат – четырехсвязная линия. Соседние пиксели линии могут находится в одном из четырех возможных (см. рис. 5б) положениях. Недостаток – избыточно толстая линия при угле 45°.
Рис. 5. Построение линии в прямоугольном растре
В гексагональном растре линии шестисвязные (см. рис. 6) такие линии более стабильны по ширине, т.е. дисперсия ширины линии меньше, чем в квадратном растре.
Рис. 6. Построение линии в гексагональном растре
Одним из способов оценки растра является передача по каналу связи кодированного, с учетом используемого растра, изображения с последующим восстановлением и визуальным анализом достигнутого качества. Экспериментально и математически доказано, что гексагональный растр лучше, т.к. обеспечивает наименьшее отклонение от оригинала. Но разница не велика.
Моделирование гексагонального растра. Возможно построение гексагонального растра на основе квадратного. Для этого гексаугольник представляют в виде прямоугольника.
Виды растров
Растровые представления изображений
Пиксел – основной элемент растровых изображений. Именно из таких элементов состоит растровое изображение.
Цифровое изображение – это совокупность пикселей. Каждый пиксел растрового изображения характеризуется координатами x и y и яркостью V(x,y) (для черно–белых изображений). Поскольку пикселы имеют дискретный характер, то их координаты – это дискретные величины, обычно целые или рациональные числа. В случае цветного изображения, каждый пиксел характеризуется координатами x и y, и тремя яркостями: яркостью красного, яркостью синего и яркостью зеленого цветов (VR, VB, VG). Комбинируя данные три цвета можно получить большое количество различных оттенков.
Заметим, что в случае, если хотя бы одна из характеристик изображения не является числом, то изображение относится к виду аналоговых. Примерами аналоговых изображений могут служить галограмы и фотографии. Для работы с такими изображениями существуют специальные методы, в частности, оптические преобразования. В ряде случаев аналоговые изображения переводят в цифровой вид. Эту задачу осуществляет Image Processing.
Растр – это порядок расположения точек (растровых элементов). На рис. 2. изображен растр, элементами которого являются квадраты, такой растр называется прямоугольным, именно такие растры наиболее часто используются.
Хотя возможно использование в качестве растрового элемента фигуры другой формы: треугольника, шестиугольника; соответствующего следующим требованиям:
− все фигуры должны быть одинаковые;
− должны полностью покрывать плоскость без наезжания и дырок.
Так в качестве растрового элемента возможно использование равностороннего треугольника рис. 3, правильного шестиугольника (гексаэдра) рис. 4. Можно строить растры, используя неправильные многоугольники, но практический смысл в подобных растрах отсутствует.
Рис. 3. Треугольный растр
Рассмотрим способы построения линий в прямоугольном и гексагональном растре.
Рис. 4. «Гексагональный растр»
В прямоугольном растре построение линии осуществляется двумя способами:
1) Результат – восьмисвязная линия. Соседние пиксели линии могут находится в одном из восьми возможных (см. рис. 5а) положениях. Недостаток – слишком тонкая линия при угле 45°.
2) Результат – четырехсвязная линия. Соседние пиксели линии могут находится в одном из четырех возможных (см. рис. 5б) положениях. Недостаток – избыточно толстая линия при угле 45°.
Рис. 5. Построение линии в прямоугольном растре
В гексагональном растре линии шестисвязные (см. рис. 6) такие линии более стабильны по ширине, т.е. дисперсия ширины линии меньше, чем в квадратном растре.
Рис. 6. Построение линии в гексагональном растре
Одним из способов оценки растра является передача по каналу связи кодированного, с учетом используемого растра, изображения с последующим восстановлением и визуальным анализом достигнутого качества. Экспериментально и математически доказано, что гексагональный растр лучше, т.к. обеспечивает наименьшее отклонение от оригинала. Но разница не велика.
Моделирование гексагонального растра. Возможно построение гексагонального растра на основе квадратного. Для этого гексаугольник представляют в виде прямоугольника.
Растровая и векторная графика: это как?
Есть два вида картинок: в одной миллионы цветов и полный фотореализм; вторую можно увеличивать и уменьшать до бесконечности без потери качества. Вот как это всё работает.
👉 Как и большинство статей в журнале «Код», эта статья для начинающих. Юные Артемии, вам не сюда. Лучше порешайте наши задачки в паблике.
Растровая графика
Растр — это множество мелких точек, из которых может состоять изображение. В случае с компьютером растр — это пиксели, из которых состоит фотография.
Например, когда вы фотографируете на смартфон или цифровой фотоаппарат, вы получаете растровое изображение, которое состоит из множества отдельных точек. Если смотреть на экране телефона или компьютера, они не видны, но если сильно увеличить, то эти точки станут заметны.
Чем сильнее увеличим фотографию, тем больше видны пиксели
👉 У растровой графики есть два главных параметра: размер изображения и глубина цвета.
Размер изображения — это количество пикселей по горизонтали и вертикали. Чем больше размер, тем сильнее можно увеличивать картинку без потери качества. Например, возьмём одну и ту же фотографию, но у одной будет размер 100 на 200 пикселей, а у другой — 1000 на 2000 пикселей:
В одном и том же масштабе вторая картинка смотрится гораздо лучше, потому что в ней больше пикселей, которые передают больше деталей
Общее правило такое: чем больше пикселей на фотографии, тем больше мелких деталей можно на ней разглядеть. Именно поэтому производители камер и смартфонов постоянно увеличивают количество пикселей у себя в устройствах.
Глубина цвета. Представьте, что ваша камера в телефоне может различать только 16 цветов. В этом случае фотографии получались бы такими:
В целом понятно, что тут изображено, но выглядит странно
Это и есть глубина цвета — сколько разных оттенков присутствует на изображении. В нашем примере 16 цветов — это 4 бита, потому что 2 в 4 степени = 16. Сравните, как выглядит та же фотография с глубиной цвета 16 и 8 бит:
Чем больше глубина цвета, тем плавнее цветовые переходы на фото
Главное применение растровой графики — фотографии и изображения с большой глубиной цвета и множеством деталей. Фотографии — это растр. Рисунки от руки — чаще всего растр. Если на изображении природа, люди, водичка или что угодно со множеством деталей, скорее всего, такое изображение будет растровым.
Компьютеры классно справляются с растровыми изображениями, потому что растр довольно прост в обработке. Компьютер ставит подряд нужное количество пикселей и красит их в нужные цвета. Операция простая, математика минимальная, просто нужно повторить её много раз. Компьютеры в этом сильны.
Векторная графика
В отличие от растровой графики, векторная состоит не из пикселей, а из математических формул. В такой графике каждое изображение нарисовано с помощью отдельных элементов:
Чтобы это нарисовать, у каждого элемента есть свои параметры, например:
Если компьютеру нужно нарисовать звёздное небо, мы можем дать ему такие команды:
В итоге получим такой рисунок:
Избражение: wallpapersafari.com
Так как мы не привязаны к размеру изображения, то по этим формулам компьютер может нам отрисовать звёздное небо любого размера — от обоев на телефон до рекламного билборда 4 на 6 метров. При этом при увеличении потери качества не происходит — компьютер просто получает от нас финальный размер изображения и рисует всё в нужных пропорциях.
👉 Сила векторной графики — в возможности бесконечно увеличивать и уменьшать размер изображения без потери качества. При изменении размера компьютер сразу пересчитывает все формулы и отрисовывает картинку заново. Поэтому при увеличении векторной графики не появляются пиксели и размытие, даже если нам нужно увеличить одну звезду в 100 раз:
Минус векторной графики в том, что в ней очень сложно создать фотореалистичное изображение. Дело в том, что каждая деталь, каждый новый цвет и каждый цветовой переход — это новая формула. Чтобы построить фотореалистичную картинку, нужно очень много формул, которые будут сложно обсчитываться, и всё равно по деталям можно понять, что перед нами не фотография:
Каждый элемент на этой картинке задаётся своей формулой. Здесь много деталей, но всё равно видно, что это не фотография, а векторная иллюстрация
То же самое изображение в кривых
Векторная графика чаще всего применяется там, где не нужна фотореалистичность — иконки, пиктограммы, рекламные материалы. Главная задача такого изображения — чтобы его можно было увеличить или уменьшить как угодно без потери качества.
‘ src=’https://thecode.media/wp-content/uploads/2021/01/image9.png’ alt=’Векторная графика’> Иконки — Сергей Чикин
Что дальше
Будем осваивать векторную графику в CSS. Заодно потренируемся наводить красоту на страницах и попрактикуемся в коде.