иммуногенность что это такое
Иммуногенность
Иммуногенность — способность антигена вызывать иммунный ответ вне зависимости от его иммунной специфичности. Степень иммуногенности зависит не только от свойств молекулы антигена, но и от условий введения в организм, а также дополнительных воздействий.
Факторы, влияющие на степень иммуногенности
На степень иммуногенности вещества влияют следующие факторы:
Литература
Ссылки
Полезное
Смотреть что такое «Иммуногенность» в других словарях:
иммуногенность — Способность препарата вызывать иммунный ответ. [Англо русский глоссарий основных терминов по вакцинологии и иммунизации. Всемирная организация здравоохранения, 2009 г.] Тематики вакцинология, иммунизация EN immunogenicityimmunogenic activity … Справочник технического переводчика
иммуногенность — (иммуно + греч. genes порождающий, производящий) способность вещества вызывать специфический иммунный ответ с развитием иммунитета … Большой медицинский словарь
иммуногенность — иммуног енность, и … Русский орфографический словарь
Иммуногенность — – способность веществ вызывать специфический иммунный ответ с развитием иммунитета … Словарь терминов по физиологии сельскохозяйственных животных
Гаптены — (от греч. ἅπτω прикреплять) низкомолекулярные вещества, не обладающие иммуногенностью и приобретающие их при увеличении молекулярного веса (например за счет прикрепления к специальному белку носителю т. н. «шлепперу»). В… … Википедия
Вакцина против вируса гепатита B — Основная статья: Гепатит В Вакцина против вируса гепатита B иммунобиологический препарат, группа вакцин против гепатита В, от разных производителей. Хотя вакцинация лишь один из нескольких способов предупреждения заболеваний,… … Википедия
Антиге́ны — (греч. anti против + gennao создавать, производить) биоорганические вещества, которые обладают признаками генетической чужеродности (антигенности) и при введении в организм вызывают развитие иммунного ответа. Антигенность присуща не только белкам … Медицинская энциклопедия
Вакци́ны — (лат. vaccinus коровий) препараты, получаемые из микроорганизмов или продуктов их жизнедеятельности; применяются для активной иммунизации людей и животных с профилактической и лечебной целями. Вакцины состоят из действующего начала специфического … Медицинская энциклопедия
Вакцина для профилактики гриппа — Основная статья: Грипп Вакцина для профилактики гриппа, лекарственный препарат из группы биологических препаратов, обеспечивающий формирование краткосрочного иммунитета к вирусу гриппа, считается одним из самых эффективных средств профилактики… … Википедия
Церварикс — Церварикс рекомбинантная адсорбированная вакцина для профилактики заболеваний, вызванных вирусами папилломы человека (ВПЧ), содержащая адъювант AS04. Представляет собой смесь вирусоподобных частиц рекомбинантных поверхностных белков ВПЧ… … Википедия
Что означает иммуногенность применительно к вакцинам от COVID-19?
Для борьбы с пандемией COVID-19 ученые во всем мире неустанно работают над созданием вакцин против вируса SARS-CoV-2. Одним из этапов процесса разработки вакцины, предшествующим оценке и получению одобрения со стороны регулирующих органов, является проведение клинических исследований. Клинические исследования призваны подтвердить, что препарат безопасен, а также сделать вывод о его эффективности и иммуногенности1.
Эффективность демонстрирует, насколько хорошо работает вакцина. Она измеряется через способность вакцины предотвратить развитие заболевания1. Для COVID-19, который нередко приводит к серьезным осложнениям, показатели эффективности включают количество случаев бессимптомного протекания болезни у заразившихся, наличие симптомов и их характер, количество госпитализаций и смертей. Для каждого из этих показателей эффективность определяется путем сравнения данных в группе участников исследования, получивших вакцину, с данными в группе, получавшей плацебо. Если в ходе исследования количество заражений, госпитализаций или смертей в группе плацебо достоверно выше, чем в группе, получившей вакцину против COVID-19, можно сделать вывод о том, что вакцина эффективна2.
Более сложным инструментом для оценки того, насколько хорошо работает вакцина, является иммуногенность. Она показывает, какой иммунный ответ вызывает вакцина и как он меняется со временем2.
Принцип работы вакцин состоит в том, что они учат организм распознавать чужеродные элементы (патогены или микроорганизмы – возбудители различных заболеваний) и активировать иммунную систему через введение в организм либо части возбудителя заболевания, либо его инактивированной формы. При этом организм реагирует на инфекцию, не подвергаясь заражению. Благодаря этому в случае естественного столкновения с возбудителем заболевания иммунная система быстрее и эффективнее среагирует на него, чем в случае, если бы она не была активирована3. При измерении иммуногенности оценивается, какие типы иммунных ответов активируются, а также как меняется сила иммунного ответа с течением времени. Этот анализ не только дает информацию о том, насколько хорошо работает вакцина, но и может помочь при расчете дозировки препарата и определении оптимального графика вакцинации1.
При этом оценка иммуногенности – комплексный процесс, сопряженный для ученых с рядом сложностей. В случае вируса SARS-CoV-2, который пока недостаточно изучен, их становится еще больше. Главная сложность состоит в том, чтобы определить, какой именно иммунный ответ, вызванный вакциной, следует считать достаточным.
Чтобы определить способность вакцины вызывать сильный и устойчивый иммунный ответ его сравнивают с реакцией людей, у которых уже есть иммунитет к заболеванию. Если реакция, вызываемая вакциной, сопоставима или сильней, чем реакция, вызываемая естественным иммунитетом, то такая вакцина обещает быть эффективной1. Однако в отношении COVID-19 ученые до конца не выяснили, что именно представляет собой эффективный естественный иммунный ответ. Без этого трудно однозначно оценить иммунный ответ, вызванный вакциной. Ориентиром в данном случае могут быть результаты первых исследований, а также знания о других коронавирусах, таких как SARS. В частности, в ходе доклинических исследований было выяснено, что антитела, особенно те, которые способны связаться с шиповидным белком вируса SARS-CoV-2 и не допустить проникновение вируса в клетки, известные как нейтрализующие антитела, являются частью механизма защиты от инфекции. Вместе с тем на данный момент неизвестно, какой уровень (титр) антител необходим для эффективной защиты. Недавние исследования также показали, что количество нейтрализующих антител, образующихся при естественном иммунитете, может уменьшаться в течение нескольких месяцев. Несмотря на то, что данный вывод не стал неожиданностью, пока неизвестно, какое влияние это окажет на продолжительность иммунного ответа.
Также было выяснено, что в формировании иммунитета к вирусу SARS-CoV-2 участвуют Т-клетки, которые активируют другие защитные реакции иммунной системы или непосредственно нейтрализуют патогены, что подтверждается фактом наличия специфических Т-клеток как у тех, у кого инфекция протекала бессимптомно, так и у тех, кто выздоровел. При этом конкретный тип и количество Т-клеток, необходимых для защиты, все еще неизвестны4.
При измерении иммуногенности ученые рассматривают два ключевых аспекта иммунного ответа:
Антитела способны связываться с поверхностью патогена. За счет этого иммунным клеткам подается сигнал, что патоген необходимо нейтрализовать, и стимулируется выработка белков комплемента, что дополнительно способствует разрушению возбудителя. Кроме того, антитела подавляют инфицирующую способность вируса, связываясь с патогеном и блокируя молекулы, необходимые для его проникновения в клетки, тем самым нейтрализуя его5. Это второй тип антител — нейтрализующие антитела, — которые рассматриваются как потенциальные факторы защиты от инфекции. В то же время при естественном заражении вирусом SARS-Cov-2 появляются и другие виды антител6. Люди, которые никогда не контактировали с возбудителем, будут иметь чрезвычайно низкий фоновый уровень антител, способных связываться с вирусом, и таких людей называют серонегативными. Люди, которые ранее подвергались воздействию возбудителя естественным путем или путем вакцинации, могут иметь высокий уровень антител, способных связывать его, и считаются серо-положительными. Общий уровень продуцируемых человеком антител можно измерить с помощью таких методов, как иммуноферментный анализ, а специфические нейтрализующие антитела можно проверить с помощью методов нейтрализации вируса.
Т-клетки выполняют множество функций при активации иммунного ответа: они участвуют в активации других иммунных клеток, выработке цитокинов — секретируемых факторов, которые могут активировать или ингибировать различные процессы иммунного ответа. Помимо этого, Т-клетки могут непосредственно уничтожать инфицированные или аномальные клетки5. Измерить уровень Т-клеток сложней, чем измерить уровень антител, однако с помощью иммуноферментного спот-анализа можно определить, какие типы Т-клеток присутствуют в организме и на каком уровне.
Вторая серьезная проблема, с которой сталкиваются ученые при оценке иммуногенности вакцин, – это отсутствие глобальных стандартов такой оценки. Из-за той поспешности, с которой ученые всего мира приступили к работе над вакцинами, было невозможно заранее согласовать точные методики используемых тестов. Существует несколько типов иммуноанализа, которые можно использовать для измерения того или иного аспекта иммунного ответа, например, количества нейтрализующих антител, и для каждого варианта могут использоваться разные наборы реагентов и разные процессы скрининга. Из-за разнообразия методик тестирования, используемых в лабораториях по всему миру, в настоящее время не установлены четкие показатели, которые бы указывали на наличие защитного иммунного ответа. Разница в методиках и показателях, в свою очередь, означает, что в настоящее время ученые и регуляторные органы фактически не могут сравнивать вакцины на основе соответствующих данных об иммуногенности, поскольку для каждой вакцины данные получают на основании разных методик тестирования, в разных лабораториях и без использования единых стандартов для сравнения2.
Со временем методики будут стандартизированы, что позволит научному сообществу лучше понять иммунный ответ на вирус SARS-CoV-2 и продолжить разработку вакцин и терапевтических средств от COVID-192. Компания «АстраЗенека» намерена продолжить сотрудничество с учеными, правительствами и многосторонними организациями по всему миру, чтобы обеспечить соблюдение надежных научных стандартов и расширить научные знания о вирусе SARS-CoV-2.
Пресс-релиз подготовлен на основании материала, предоставленного организацией. Информационное агентство AK&M не несет ответственности за содержание пресс-релиза, правовые и иные последствия его опубликования.
Иммуногенность
Смотреть что такое «Иммуногенность» в других словарях:
Иммуногенность — Иммуногенность способность антигена вызывать иммунный ответ вне зависимости от его иммунной специфичности. Степень иммуногенности зависит не только от свойств молекулы антигена, но и от условий введения в организм, а также дополнительных… … Википедия
иммуногенность — Способность препарата вызывать иммунный ответ. [Англо русский глоссарий основных терминов по вакцинологии и иммунизации. Всемирная организация здравоохранения, 2009 г.] Тематики вакцинология, иммунизация EN immunogenicityimmunogenic activity … Справочник технического переводчика
иммуногенность — (иммуно + греч. genes порождающий, производящий) способность вещества вызывать специфический иммунный ответ с развитием иммунитета … Большой медицинский словарь
иммуногенность — иммуног енность, и … Русский орфографический словарь
Иммуногенность — – способность веществ вызывать специфический иммунный ответ с развитием иммунитета … Словарь терминов по физиологии сельскохозяйственных животных
Гаптены — (от греч. ἅπτω прикреплять) низкомолекулярные вещества, не обладающие иммуногенностью и приобретающие их при увеличении молекулярного веса (например за счет прикрепления к специальному белку носителю т. н. «шлепперу»). В… … Википедия
Вакцина против вируса гепатита B — Основная статья: Гепатит В Вакцина против вируса гепатита B иммунобиологический препарат, группа вакцин против гепатита В, от разных производителей. Хотя вакцинация лишь один из нескольких способов предупреждения заболеваний,… … Википедия
Антиге́ны — (греч. anti против + gennao создавать, производить) биоорганические вещества, которые обладают признаками генетической чужеродности (антигенности) и при введении в организм вызывают развитие иммунного ответа. Антигенность присуща не только белкам … Медицинская энциклопедия
Вакци́ны — (лат. vaccinus коровий) препараты, получаемые из микроорганизмов или продуктов их жизнедеятельности; применяются для активной иммунизации людей и животных с профилактической и лечебной целями. Вакцины состоят из действующего начала специфического … Медицинская энциклопедия
Вакцина для профилактики гриппа — Основная статья: Грипп Вакцина для профилактики гриппа, лекарственный препарат из группы биологических препаратов, обеспечивающий формирование краткосрочного иммунитета к вирусу гриппа, считается одним из самых эффективных средств профилактики… … Википедия
Церварикс — Церварикс рекомбинантная адсорбированная вакцина для профилактики заболеваний, вызванных вирусами папилломы человека (ВПЧ), содержащая адъювант AS04. Представляет собой смесь вирусоподобных частиц рекомбинантных поверхностных белков ВПЧ… … Википедия
Иммуногенность что это такое
Различают полные и неполные антигены, или гаптены. Последние относительно простые вещества, способные участвовать в иммунологических взаимодействиях, но не способные активировать АПК и самостоятельно индуцировать иммунный ответ. Лишь после присоединения к крупным, обычно белковым молекулам (носителям), гаптен может приобрести свойства полного антигена.
Антигенными свойствами обладают биополимеры белки, их комплексы с углеводами (гликопротеиды), липидами (липопротеиды) нуклеиновыми кислотами (нуклеопротеиды), а также сложные полисахариды, липополисахариды. Для проявления антигенных свойств имеет значение размер молекулы. Молекулы с молекулярной массой более 10 000, как правило, антигенны, а при меньшей молекулярной массе чаще обладают свойствами гаптенов. Полисахариды антигенны при молекулярной массе выше 100 000.
Полипептиды, состоящие из Lаминокислот, антигенны, а состоящие из Dаминокислот, лишены этого свойства. Белки при денатурации утрачивают свои антигенные свойства. Например, белки, коагулированные кипячением, обработкой крепкими растворами кислот или щелочей, перестают быть антигенами. Проявления антигенного действия связано с катаболическим разрушением антигенов в организме. Так, Dполипептиды медленно и не полностью разрушаются ферментами организма и не проявляют антигенных свойств.
Практически все природные субстраты, обладающие антигенными свойствами, являются комплексами нескольких антигенов. Ниже будет показано, что микробная клетка обладает множеством антигенов, свойственных отдельным ее структурам. Даже индивидуальные молекулы могут обладать несколькими антигенами.
Основными свойствами антигена являются: специфичность, чужеродность, иммуногенность или толерогенность.
Специфичность. Антигенная специфичность представляет собой уникальное биологическое явление, которое лежит в основе иммунологических взаимодействий в организме, а также лабораторных методов определения разных антигенов, серодиагностики, методов специфической профилактики и терапии инфекционных заболеваний.
Структура, обладающая индивидуальной антигенной специфичностью, называется антигенным детерминантом, или эпитопом. Последнее название отражает то, что антигенной активностью обладают только структуры лежащие на поверхности молекулы, а глубокие проявляют антигенность лишь при изменении конформации или разрушении молекулы. Разнообразие белковых эпитопов достигается за счет мозаики аминокислотных остатков, расположенных на глобулярной поверхности молекулы белка.
Эпитопы, определяющие антигенность белковой молекулы, состоят из 625 аминокислот и располагаются в разных частях молекулы, разделяясь неантигенными структурами. При этом эпитопы одной молекулы не обязательно должны иметь одинаковый состав и одинаковую специфичность. Количество одинаковых эпитопов на молекуле определяет число молекул антител, которые могут к ней присоединиться, т.е. валентность данного антигенного субстрата. Валентность антигенов возрастает с их молекулярной массой.
Так, валентность яичного альбумина с молекулярной массой 45 000 равна 5, а валентность гемоцианина с мол. массой 6,5 млн. 231. Эпитоп, отделенный от молекулы, может иметь только одну валентность и обладать свойствами гаптена, а вся молекула для данного эпитопагаптена играет роль носителя. Поскольку эпитопы, определяющие антигенные свойства молекулы расположены на одних участках, а токсические свойства микробных токсинов определяют другие участки, могут быть приготовлены анатоксинымолекулы, лишенные токсических свойств, но сохранивших антигенные. Анатоксины служат основой вакцинных препаратов для создания антитоксического иммунитета.
Чужеродность. Антиген вызывает позитивный иммунный ответ (образование антител и активных лимфоцитов) только в тех случаях, когда он чужероден, т.е. обладает стектурами, отсутствующими в данном организме. К собственным антигенам организм толерантен. Только при изменениях, придающих антигену признаки чужеродности, он приобретает способность индуцировать позитивный иммунный ответ. Строение антигенов отражает эволюционную близость обладающих ими организмов. Существуют общие антигены, свойственные представителям разных семейств, родов, видов. Имеются вариантные антигены, различные для особей одного и того же вида.
Определение антигенного состава используется для классификации разных групп живых существ и выявления эволюционных связей между ними. В ходе эволюции микроорганизмы, инфицирующие человека и животных, приобретают антигены, сходные с антигенами хозяина, что называется антигенной мимикрией. Это способствует тому, что к таким антигенам долго не возникает иммунологической реакции, и микроорганизмы получают дополнительный шанс для выживания в организме хозяина, поскольку они не распознаются как чужеродные.
Чужеродные антигены, обладающие структурами, сходными с антигенами хозяина, получили название перекрестнореагирующих антигенов (ПРА). Однако, поскольку ПРА находятся в комплексе с другими высокоиммуногенными для организма антигенами, иммунный ответ на них может возникнуть. В этом случае образовавшиеся гуморальные и клеточные антитела вступают в контакт с антигенами хозяина и могут вызвать иммунопатологический процесс.
Антигены нервной системы, глаз, репродуктивных органов отделены от внутренней среды физиологическими барьерами. Их антигены не индуцируют полноценную толерантность и не вызывают в здоровом организме аутоиммунной реакции, поскольку не проникают в органы иммуногенеза. Такие антигены называют забаръерными. В случаях повреждения барьеров при травме или заболевании забарьерные антигены поступают в общую циркуляцию и могут вызвать иммунопатологический процесс.
Собственные антигены организма могут подвергнуться модификации при действии внешних химических или физических факторов или вступить в контакт с чужеродными веществами гаптенной природы. В результате формируются антигены, гаптенная часть которых чужеродная структура, а носитель собственный антиген. Такие модифицированные антигены часто служат причиной развития аллергических реакций.
Иммуногенность и толерогенность альтернативные свойства каждого антигенного субстрата. Для индукции иммунного ответа и толерантности необходимо воздействие антигена на лимфоцит, обладающий рецепторами для данного антигена антигенреактивную клетку (АРК). Отличия состоят в том, что при индукции позитивной иммунной реакции АРК получают стимулы от цитокинов, обеспечивающие их пролиферацию и формирование клона эффекторных клеток. При индукции иммунологической толерантности АРК не подвергается дальнейшей стимуляции и либо погибает, либо лишается рецепторов к антигену.
Формирование иммунологической толерантности Т и Влимфоцитов к собственным антигенам, как уже отмечалось, происходит в организме постоянно и созревающие лимфоциты, обладающие рецепторами к аутоантигенам, гибнут в результате контакта с ними в тимусе или в костном мозге. Чужеродные антигены в иммунологически полноценном организме встречают преимущественные условия для иммуногенного действия и лишь в особых ситуациях проявляют толерогенные свойства. Это наблюдается: При действии антигена в условиях неспособности организма обеспечить стимуляцию клеток, вошедших в контакт с антигеном в случаях действия иммунодепрессивных факторов, физиологической недостаточности факторов, способствующих иммуногенезу (незрелость организма, беременность).
При отсутствии стимуляции активного иммунного ответа, вследствие недостаточной дозы антигена возникают («низкодозная» толерантность), сверхбольшой дозы антигена («высокодозная» толерантность) или иммунологический паралич. При попадании антигена в структуры, не формирующие позитивный иммунный ответ («пероральная» толерантность).
Толерогенными свойствами обладают также низкоиммуногенные антигенные препараты деагрегированные белки, некоторые гаптены. Во всех этих случаях толерантность сохраняется, как правило, только в течение того времени пока в организме сохраняется и проявляет свое действие толероген. Как только созреют новые антигенреактивные клетки (АРК), не подвергшиеся толерогенной обработке, толерантность прекращается, несмотря на то, что в организме еще сохраняются ареактивные клетки.
Для характеристики иммунологической толерантности следует отметить, что чувствительность Т и Влимфоцитов к индукции толерантности различна: Тлимфоциты более чувствительны к индукции толерантности, чем Влимфоциты, и сохраняются толерантными более длительное время. Поэтому в организме может возникнуть ситуация, когда Тлимфоциты толерантны к данному антигену, а Влимфоциты не толерантны. В этом случае иммунологическая толерантность на уровне организма сохраняется, так как для активации Влимфоцитов необходим сигнал от Тхелперов. Однако в некоторых случаях создаются условия для нарушения толерантности, так как на некоторые антигены Влимфоциты реагируют без помощи Тклеток.
Условия, способствующие иммуногенному действию антигенов. Иммуногенность зависит от состояния иммунизируемого организма, дозы способа введения, интервалов между прививками, свойств антигена, в частности от скорости разрушения его в организме. Иммуногенный эффект лучше всего проявляется при внутрикожном и подкожном введении антигена, а при необходимости создать секреторный иммунитет при пероральном или ингаляторном введении.
Иммуногенность повышается при введении антигенов с адъювантами (лат. adjuvare помогать), препаратами, способствующими созданию депо антигена, стимуляции фагоцитоза. Адъюванты обладают митогенным действием на лимфоциты, способствуют продукции цитокинов. В качестве адъювантов используются гидроксид или фосфат алюминия, масляные эмульсии. Применяемый для иммунизации животных адъювант Фрейнда смесь минерального масла, эмульгатора и убитых микобактерий туберкулеза. Роль адъюванта может выполнить липополисахарид (ЛПС) грамотрицательных бактерий, служащий неспецифическим стимулятором Влимфоцитов.
Иммуногенность способность антигена вызывать иммунный ответ вне зависимости от его иммунной специфичности. Степень иммуногенности зависит не только от свойств молекулы антигена, но и от условий введения в организм, а также дополнительных воздействий.
Факторы, влияющие на степень иммуногенности
На степень иммуногенности вещества влияют следующие факторы:
Природа антигена. Высокой иммуногенностью обладают белки и углеводы. Нуклеиновые кислоты, липиды и другие органические вещества зачастую слабоиммуногенны и могут выступать в роли эффективных антигенов только в составе комплексных соединений.
Размер молекулы вещества. С повышением молекулярной массы растет иммуногенность. Для белков пороговый размер молекулы, при котором появляется иммуногенность, видимо, связан с появлением аспиральной структуры. Молекулярная масса антигена влияет не только на формирование определенной вторичной структуры белка, но и на количество эпитопов и их разнообразие, что повышает валентность антигена и также влияет на степень его иммуногенности.
Жесткость структуры молекулы антигена, то есть способность сохранять определенную конфигурацию, увеличивает иммуногенность.
Принадлежность антигенов к классам полимеров, свойственным высшим животным, увеличивает их иммуногенность для последних. В частности, полипептиды, состоящие из не свойственных позвоночным Dаминокислот, слабо иммуногенны для них. Предполагается, что это может быть связано с трудностью деградации этих веществ изза отсутствия необходимых ферментов.
1.2. АНТИГЕН РАСПОЗНАЮЩИЙ РЕЦЕПТОРЫ. АНТИГЕНЫ, МАРКЕРЫ
Распознавание антигенов
Существуют большое количество различных антител. Все они реагируют с огромным количеством разнообразных антигенов. Аналогично, огромное количество Tклеток распознает огромное количество разнообразных антигенов. Специфическое распознавание антигена осуществляется лимфоцитами, которые имеют рецепторы для антигена на их поверхностях. Существует огромное количество рецепторов с отличающейся специфичностью, реагирующих со всем диапазоном известных антигенов, но каждый лимфоцит имеет рецепторы только для единственного антигена. Отсюда следует, что существует огромное количество лимфоцитов (приблизительно 106109), имеющих один единственный тип рецептора каждый.
Антигенными рецепторами Bлимфоцитов являются иммуноглобулины. Действие механизма перестройки генов (см. ниже) приводит к появлению разнообразных молекул иммуноглобулинов, которые служат как рецепторы для антигенов на поверхности клетки и, в конечном счете, представляют собой специфический иммуноглобулин (антитело), которое будет секретироваться плазматическими клетками после возникновения иммунного ответа.
В упрощенном виде, антиген выбирает лимфоциты, которые имеют рецепторы (то есть, поверхностный иммуноглобулин Bклеток), соответствующие ему (подходят друг к другу, как ключ к замку). Это взаимодействие приводит к делению и трансформации Bклетки, и, в конечном счете, к образованию клона плазматических клеток, которые секретируют молекулы антител со специальными связывающими участками, которые являются по существу такими же, как и расположенные на поверхности клетки первоначального лимфоцита, распознавшего антиген.
Tлимфоциты также имеют рецепторы для антигенов и популяции Tклеток имеют подобную степень разнообразия. Рецептор Тклетки состоит из пары полипептидных цепей (a и bцепи), при этом каждая цепь имеет вариабельный и постоянный участок, таким образом рецептор подобен рецептору Вклетки (который является поверхностным иммуноглобулином). Рецептор Тклетки таким образом может быть расценен как член «семейства иммуноглобулинов высшего качества», которое включает не только иммуноглобулины, но и другие молекулы, вовлеченные во взаимодействие и распознавание клеток, при этом все они имеют общее эволюционное происхождение.
Разнообразие антигенраспознающих рецепторов Тклетки формируется в раннем эмбриональном периоде при помощи механизма перестройки генов, который похож на механизм образования разнообразия иммуноглобулинов. Также, параллельно с активацией Вклеток, антиген выбирает и Tклетки, несущие рецепторы с соответствующей специфичностью, и, таким образом, стимулирует пролиферацию специфического клона Tклеток, результатом которого является образование поколения многочисленных Tклетокэффекторов идентичной специфичности. Обратите внимание, что распознавание антигена Tклетками сложный процесс, вовлекающий пространственное взаимодействие антигена с MHCмолекулой на макрофагах и рецептором антигена Тклетки при участии CD3 и CD4 или CD8 молекул на Tклетках. Tхелперы распознают антигены, связанные с молекулами MHC II класса, а Tсупрессоры и цитотоксические Тклетки распознают антигены, связанные с молекулами MHC I класса. Были описаны Tклетки, несущие рецептор, составленный из гамма и дельта цепей, однако их функция неизвестна.
Генперетасовывающий механизм
Разнообразие антигенных рецепторов на B и Tклетках возникает на уровне ДНК во время дифференцировки лимфоидных предшественников в эмбриональном периоде. Вовлеченные в данный процесс гены расположены в хромосомах 2 (k цепь), 22 (l цепь), 14 (тяжелые цепи, a и g цепи рецепторов Тклеток) и 7 (b и d цепи рецепторов Тклеток). Хотя каждый из этих генов функционирует как «генная единица» производства цепи полипептидов, каждый ген существует в цепи ДНК как сложный «мультиген», состоящий из большого количества различных сегментов ДНК, которые могут быть свернуты или собраны вместе в различных модификациях, что приводит к возникновению многочисленных различных шаблонов ДНК. Специальный механизм соединяет по одному сегменту ДНК от каждой категории, формируя VDJCпоследовательность, которая служит как функциональный ген, на котором образуется и РНК, кодирующая всю тяжелую цепь.
В настоящее время довольно широко практикуется использование специфичности ответных иммунных реакций при различных патологиях, с целью ранней диагностики и выявления заболеваний. Особенно активно такие методы используются в медицине. Так, например наиболее достоверным в такой диагностике является обнаружение специфических иммунных комплексовмаркеров. Данные комплексы характеризуют различные стадии иммунного процесса, происходящего при различных патологических состояниях в организме человека или животного. Наиболее часто идентифицируют специфические и неспецифические маркеры ВИЧ у человека методами ИФА и ПЦР.
Кроме того широко используется как в медицинской так и ветеринарной практике обнаружение опухолевых маркеров параллельно с гистологическими методами исседования. Чаще всего идентифицируют маркеры опухолевого роста: Альфафетопротеин (АФП), человеческий хорионический бетагонодотропин (бетаЧГТ), простатспецифический (ПСА), карциноэмбриональный (КЭА), антиген СА125;СА153; СА195; Бета 2мнкроглобулин, SCCA (другое название ТА4) это опухолеассоциированный антиген плоскоклеточных карцином различных локализаций и другие маркеры.
© ФГБОУ ВПО «Красноярский государственный аграрный университет»